Unique paper Code	:	32371303
Name of the Paper	:	Mathematical Analysis
Name of the Course	:	B.Sc. (H) Statistics Under CBCS
Semester	:	III
Duration	:	3 Hours
Maximum Marks	:	75

Instructions for Candidates

I

- 1.
- Attempt any four questions. All Questions carries equal marks 18.75 marks each. 2.

- 1. (a) Define
- (i) Neighbourhood of a point,
- (ii) Open Set and
- (iii) Closed Set.

Give an example of each of above.

Also show that the union of an arbitrary family of Closed sets may

- (i) be a Closed Set
- (j) fail to be a Closed Set

(b) Define Supremum and infimum of a Set. Find these supremum and infimum for the following set S where

$$S = \{ x \in R : x^2 - 2x - 5 < 0 \}.$$

(c) Examine the following set for its limit point/(s)

$$S = \left\{\frac{1}{n}, n \in Z^+\right\}_{-}$$

(6, 4, 8.75)

(7,11.75)

2. (a) Define a Convergent Sequence. Use the definition to show that $\lim_{n\to\infty} \frac{3+2\sqrt{n}}{\sqrt{n}} = 2$.

(b) Define Convergence and Absolute Convergence of a Series. Is every convergent series absolute convergent ? Justify your answer. Test for convergence of the series

$$1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} - \dots$$

3. (a) Test for the convergence of the series

i)
$$\sum_{n=1}^{\infty} (1/n)^{1/n}$$

ii) $\frac{\alpha}{\beta} + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)} + \dots$

(b) Obtain Maclaurin's series expansion of $f(x) = (1 + x)^m \quad \forall x \in R$, where m is a positive integer.

(5+7, 6.75)

- 4. (a) State and prove Rolle's Theorem. Give its Geometrical geometrical Interpretation interpretation. Further prove that if p is a polynomial and p' the derivative of p, then between any two consecutive zeroes of p', there lies at most one zero of p.
 - (b) Let f be the function defined on R by setting

$$f(x) = \begin{cases} |x-1| + |x+2|, & x \neq 0\\ 0 & x = 0 \end{cases}$$

Examine the function f for continuity and derivability at x = 1 and x = -2.

(10.75,8)

- 5. (a) Derive a formula which can be used for interpolating a value of f(x) near the end of the tabulated values.
 - (b) Identify the following expression and derive the sameit by defining the appropriate conditions.

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + \dots + (x - x_0)(x - x_1)\dots(x - x_n)f(x_0, x_1, \dots, x_n)$$

(c) Use method of separation of symbols to prove the identities

 $u_{0} + {\binom{n}{1}}u_{1}x + {\binom{n}{2}}u_{2}x^{2} + \dots + {\binom{n}{n}}u_{n}x^{n} = (1+x)^{n}u_{0} + {\binom{n}{1}}(1+x)^{n-1}x\Delta u_{0} + {\binom{n}{2}}(1+x)^{n-2}x^{2}\Delta^{2}u_{0} + \dots \dots + x^{n}\Delta^{n}u_{0}$

(7,7,4.75)

6 (a) Defined the operators E, Δ , μ , δ and \forall and show that

$$\mu = \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right) = \frac{2 + \Delta}{2\sqrt{1 + \Delta}} = \sqrt{1 + \frac{1}{4}\delta^2}$$

(b) Calculate approximations to the value of $\int_0^6 \frac{dx}{1+x^2}$ by using simpson's Simpson's one-third rule.

(9.75, 9)

Unique Paper Code	: 32371301
Name Of The Paper	: Sampling Distributions
Name of the Course	: B.Sc.(H) Statistics(under CBCS)
Semester	: 111
Duration	: 3 hrs
M.Marks	: 75

Instructions for candidates:

- 1. All questions carry equal marks
- 2. Attempt any four questions.

1) If X is a random variable and $E(X^2) < \infty$, then prove that $P(|X| \ge a) \le E(X^2)/a^2$, $\forall a \ge 0$. If $\{X_k\}$ is a sequence of independent random variables such that $P(X_k = \pm k^{\alpha}) = \frac{1}{2} \sqrt{\frac{1}{2}} x_{\alpha}$ amine whether WLLN and central limit theorem hold for the sequence $\{X_k\}$.

2) Suppose X₁, X₂,....,X_n (n > 1) are independent variates each distributed as N(0, σ^2). Find the p.d.f. of W = $\frac{X_1}{\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}}$ Why does W not follow the t-distribution? If V = $\frac{W\sqrt{\sum_{i=1}^n x_i^2}}{\sqrt{\sum_{i=2}^n x_i^2}}$ x $\sqrt{\frac{n-1}{n}}$, obtain the distribution of V.

- 3) Show that for F- distribution with (n_1, n_2) d.f., mean is greater than mode. Also discuss the shape of probability curve of F-distribution.
- 4) Let $X_1, X_2, ..., X_n$ be a random sample of size n with common p.d.f.

 $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$

Find the mean and variance of r^{th} order statistic $X_{(r)}$. Also find COV ($X_{(1)}, X_{(n)}$).

- 5) Let X_1 , X_2 ,..., X_n be a random sample from $N(\mu, \sigma^2)$. Derive the p.d.f. of S^2 , where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$. Also find E(S^{2k}). Hence or otherwise find E(S²)and Var(S²).
- 6) The mean yield of two sets of plots and their variability are as given below Examine.
 - Whether the difference in the mean yields of two sets of plots is significant and (i)
 - (ii) Whether the difference in the variability in yields is significant.

	Set of 40 PLots	Set of 60 Plots
Mean Yield per plot	1258kg	1243kg
S.D. per Plot	34kg	28kg

Also obtain the 95% confidence interval for the difference of means.

Unique Paper Code: 32373902

Name of the Paper: Statistical Data Analysis Using R (SEE-2)

Name of the Course: B.Sc. (Hons.) Statistics

	Sen	nester: III		Formatted: Font: (Default) Times New
	Dur	ation: 2 hours		New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
	Max	x Marks: 50 Not as per OBE instructions		Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
		Instructions for candidates		
	Atte	empt any FOUR questions. Write R codes for each question given in Section B along v other question related answers.	vith	
M /	لله جر	in The blanks. Section A		
P <u>c</u>	1(a) (b)	R code used to append an observation to a vector L is given by A command used to extract 4^{th} and 6^{th} element from a vector x of 8 elements is	1 1	Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
	(c) (d)	In R missing values are represented by which should be in capital letters. Graphical window can be divided into several parts using the graphical instruction	1	
	(e) (f)	A command/R code abline ($v = value$) is used for drawing line. Write a statement/command to install a package to be used in R. Also, loads the same package for the current session of R.	$1 \\ 1\frac{1}{2}$	
	(g)	Write the arguments used in graphical representation of R for the line type and line width.	$1\frac{1}{2}$	
	(h)	Write R codes to obtain $P(X \le 4)$, where $X \sim Binomial(n = 15, prob. = 0.6)$.	$1\frac{1}{2}$	
	(i)	Write the output of the following R Codes: X <- seq(10,90,20)	$1\frac{1}{2}$	
t	(j)	Can we use customized x –axis limits in a graphical representation? Give example.	$1\frac{1}{2}$	
		Section B		

Given the frequency distribution $x_i | f_i$, having equal class intervals, draw less than and more than ogives in a single plot and also find the median. Also draw $12\frac{1}{2}$ **Q**2 another plot for a histogram.

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

ob	Write P. Code to	1	Eormatted: Font: (Default) Times New
<u>ж</u> р	1) construct boxplot and qq plot to check the normality of the parent population.	$\frac{12}{2}$	Roman, 12 pt, Complex Script Font: Tin
M	2) if the parent population is normal then construct 95% and 90% confidence interval for the population mean.		New Roman, 12 pt
Q4	Write a R- code for revealing the effect of increasing the values of parameter lambda in a Poisson distribution.	$12\frac{1}{2}$	Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Tin New Roman, 12 pt
Q5 W	t-test for difference of means when the samples are drawn from same population. Draw your conclusions based on 10% level of significance. Also interpret the	$12\frac{1}{2}$	Formatted: Font: (Default) Times Nev Roman, 12 pt, Complex Script Font: Tin New Roman, 12 pt
	results as obtained in R. Write R codes for mean, variance, median and mode for both the samples used in the above t-test.		Formatted: Font: (Default) Times Nev Roman, 12 pt, Complex Script Font: Tin New Roman, 12 pt
<mark>∕</mark> Q6	Write a R- code for the following (i) Draw a SRSWOR of size 20 from the population data frame Y of 100	$12\frac{1}{2}$	Formatted: Font: (Default) Times Nev Roman, 12 pt, Complex Script Font: Tin New Roman, 12 pt
	students. Data frame has 3 fields viz. Name, RollNo and Marks. (ii) Calculate sample mean, variance and population mean and variance of a field Marks		Formatted: Font: (Default) Times Nev Roman, 12 pt, Complex Script Font: Ti New Roman, 12 pt
	(iii) Which library is required to be installed for above function.		Formatted: Font: (Default) Times New

w imes

N mes

w mes

w mes

w mes

w mes

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt