Unique paper Code	$:$	32371303
Name of the Paper	$:$	Mathematical Analysis
Name of the Course	$:$	B.Sc. (H) Statistics Under CBCS
Semester	$:$	III
Duration	$:$	3 Hours
Maximum Marks	$:$	75

Instructions for Candidates

1. Attempt any four questions.
2. All Questions carries equal marks 18.75 marks each.
3. (a) Define
(i) Neighbourhood of a point,
(ii) Open Set and
(iii) Closed Set.

Give an example of each of above.
Also show that the union of an arbitrary family of Closed sets may
(i) be a Closed Set
(j) fail to be a Closed Set
(b) Define Supremum and infimum of a Set. Find these-supremum and infimum for the following set S where

$$
S=\left\{x \in R: x^{2}-2 x-5<0\right\} .
$$

(c) Examine the following set for its limit point/(s)

$$
S=\left\{\frac{1}{n}, n \in Z^{+}\right\}
$$

$$
(6,4,8.75)
$$

2. (a) Define a Convergent Sequence. Use the definition to show that $\lim _{n \rightarrow \infty} \frac{3+2 \sqrt{n}}{\sqrt{n}}=2$.
(b) Define Convergence and Absolute Convergence of a Series. Is every convergent series absolute convergent? Justify your answer. Test for convergence of the series

$$
\begin{equation*}
1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}-\ldots \tag{7,11.75}
\end{equation*}
$$

3. (a) Test for the convergence of the series
i) $\sum_{n=1}^{\infty}(1 / n)^{1 / n}$
ii) $\frac{\alpha}{\beta}+\frac{1+\alpha}{1+\beta}+\frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)}+\ldots$..
(b) Obtain Maclaurin's series expansion of $f(x)=(1+x)^{m} \quad \forall x \in R$, where m is a positive integer.
4. (a) State and prove Rolle's Theorem. Give its Geometrieal_geometrical Interpretationinterpretation. Further prove that if \mathbf{p} is a polynomial and \mathbf{p}^{\prime} the derivative of \mathbf{p}, then between any two consecutive zeroes of \mathbf{p}^{\prime}, there lies at most one zero of \mathbf{p}.
(b) Let f be the function defined on R by setting

$$
f(x)= \begin{cases}|x-1|+|x+2|, & x \neq 0 \\ 0 & x=0\end{cases}
$$

Examine the function f for continuity and derivability at $\mathrm{x}=1$ and $\mathrm{x}=-2$.
$(10.75,8)$
5. (a) Derive a formula which can be used for interpolating a value of $f(x)$ near the end of the tabulated values.
(b) Identify the following expression and derive the sameit by defining the appropriate conditions-

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\cdots+\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) f\left(x_{0}, x_{1}, \ldots \ldots, x_{n}\right)
$$

(c) Use method of separation of symbols to prove the identities

$$
\begin{aligned}
& u_{0}+\binom{n}{1} u_{1} x+\binom{n}{2} u_{2} x^{2}+\cdots+\binom{n}{n} u_{n} x^{n}=(1+x)^{n} u_{0}+\binom{n}{1}(1+x)^{n-1} x \Delta u_{0}+ \\
& \binom{n}{2}(1+x)^{n-2} x^{2} \Delta^{2} u_{0}+\cdots \ldots \ldots+x^{n} \Delta^{n} u_{0}
\end{aligned}
$$

6 (a) Defined the operators E, Δ, μ, δ and ∇ and show that

$$
\mu=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right)=\frac{2+\Delta}{2 \sqrt{1+\Delta}}=\sqrt{1+\frac{1}{4} \delta^{2}}
$$

(b) Calculate approximations to the value of $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using simpson's-Simpson's onethird rule.

Unique Paper Code : 32371301
Name Of The Paper : Sampling Distributions
Name of the Course: B.Sc.(H) Statistics(under CBCS)
Semester : III
Duration : 3 hrs
M.Marks : 75

Instructions for candidates:

1. All questions carry equal marks
2. Attempt any four questions.
1) If X is a random variable and $E\left(X^{2}\right)<\infty$, then prove that $P(|X| \geq a) \leq E\left(X^{2}\right) / a^{2}, \forall a \geq 0$. If $\left\{X_{k}\right\}$ is a sequence of independent random variables such that $P\left(X_{k}= \pm k^{\alpha}\right)=1 / 2,0 x a m i n e$ whether WLLN and central limit theorem hold for the sequence $\left\{X_{k}\right\}$.
2) Suppose $X_{1}, X_{2}, \ldots \ldots . . ., X_{n}(n>1)$ are independent variates each distributed as $N\left(0, \sigma^{2}\right)$. Find the p.d.f. of $\mathrm{W}=\frac{\mathrm{X}_{1}}{\sqrt{\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n} x_{\mathrm{i}}^{2}}}}$ Why does W not follow the t -distribution? If $V=\frac{W \sqrt{\sum_{i=1}^{n} x_{i}^{2}}}{\sqrt{\sum_{i=2}^{n} x_{i}^{2}}} \times \sqrt{\frac{n-1}{n}}$ Wher h
3) Show that for F - distribution with $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ d.f. , mean is greater than mode. Also discuss the shape of probability curve of F -distribution.
4) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n with common p.d.f.

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
1, & 0<x<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the mean and variance of $r^{\text {th }}$ order statistic $X_{(r)}$. Also find CeV $\left(X_{(1)}, X_{(n)}\right)$.
5) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right)$. Derive the p.d.f. of S^{2}, where $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$. Also find $E\left(S^{2 k}\right)$. Hence or otherwise find $E\left(S^{2}\right)$ and $\operatorname{Var}\left(S^{2}\right)$.
6) The mean yield of two sets of plots and their variability are as given below Examine.
(i) Whether the difference in the mean yields of two sets of plots is significant and
(ii) Whether the difference in the variability in yields is significant.

	Set of 40 PLots	Set of 60 Plots
Mean Yield per plot	1258 kg	1243 kg
S.D. per Plot	34 kg	28 kg

Also obtain the 95% confidence interval for the difference of means.

Name of the Paper: Statistical Data Analysis Using R (SEE-2)
Name of the Course: B.Sc. (Hons.) Statistics
Semester: III
Duration: 2 hours
Max Marks: $50 \quad$ Not as per OBE instractions

Instructions for candidates

Attempt any FOUR questions. Write R codes for each question given in Section B along with other question related answers.

Section A

Q1 (a) R code used to append an observation to a vector L is given by \qquad -. $\quad 1$
(b) A command used to extract $4^{\text {th }}$ and $6^{\text {th }}$ element from a vector x of 8 elements is 1
\qquad .
(c) In R missing values are represented by \qquad which should be in capital 1 letters.
(d) Graphical window can be divided into several parts using the graphical instruction
\qquad .
(e) A command/R code abline ($\mathrm{v}=$ value) is used for drawing \qquad line.
(f) Write a statement/command to install a package to be used in R. Also, loads the same package for the current session of R.
(g) Write the arguments used in graphical representation of R for the line type and line width.
(h) Write R codes to obtain $P(X \leq 4)$, where $X \sim \operatorname{Binomial}(n=15$, prob. $=0.6) . \quad 1 \frac{1}{2}$
(i) Write the output of the following R Codes:
$X<-\operatorname{seq}(10,90,20)$
X
(j) Can we use customized x -axis limits in a graphical representation? Give example.

Section B

Q2 Given the frequency distribution $x_{i} \mid f_{i}$, having equal class intervals, draw less than and more than ogives in a single plot and also find the median. Also draw $12 \frac{1}{2}$ another plot for a histogram.

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New
Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt .

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New
Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

