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STEPHEN HAWKING

This journal is dedicated to Stephen Hawking, Fellow of Royal Society who was best

known for his contributions to the fields of cosmology, general relativity and quantum

gravity, especially in the context of black holes.

His work on the origins and structure of the universe, from the Big Bang to

ground-breaking theorems regarding singularities within the framework of general

relativity, making the theoretical prediction that black holes should emit radiation (known

today as Hawking radiation) revolutionized the field.

Stephen Hawking will be continued to be remembered for his own theories, of cosmology in

general and for how he brought science in the public gaze through his popular book A

Brief History of Time: From the Big Bang to Black Holes.
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PREFACE

Éclat, 2017 - 2018 has been an extraordinary journey at many levels. The
journal, which was only an idea a few years back has become an integral part
of the Mathematics department of the college. The eight papers that have been
included in this year’s edition have been very carefully written and compiled so
as to stimulate the thought process of the readers.

Just like the previous year, Éclat 2017 - 2018 contains four categories of
mathematics namely, History of mathematics, Rigour in mathematics, Inter
disciplinary aspects of mathematics and Extension of course content. We have
tried our best to make the journal inclusive so that readers from all fields can
find a suitable content of their interest. The four categories discussed in the
journal will give you a comprehensive idea about the evolution of the subject
over the years. We hope that you will get a detailed knowledge of the various
topics of mathematics.

The publication of this journal would have been impossible without the enthu-
siasm of the department of Mathematics of our college. We sincerely thank the
faculty of the Department of Mathematics, Lady Shri Ram College for Women,
for guiding and supporting us throughout the year. We are open to any sugges-
tions, corrections and submission from our readers.

We dedicate this volume of the journal to Sir Stephen Hawking, Fellow of
Royal Society who was best known for his contributions to the fields of cosmol-
ogy, general relativity and quantum gravity, especially in the context of black
holes.

The Editorial Team

Aakshi Malasi , B. Sc. (Hons.) Mathematics, 3rd Year
Nikita Sobti, B. Sc. (Hons.) Mathematics, 3rd Year
Kushagri Tandon, B. Sc. (Hons.) Mathematics, 2nd Year
Namrata Lathi, B. Sc. (Hons.) Mathematics, 2nd Year
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History of Mathematics

Mathematics is one of the oldest academic discipline involving stimulating and intriguing
concepts.It is far beyond the ken of one individual and to make any contribution to the
evolution of ideas, and understanding of the motivation behind the ideas is needed. The
section covers the genesis of mathematical ideas, the stream of thought that created the
problem and what led to its solution. The aim is to acquaint the readers with historically

important mathematical vignettes and make them inured in some important ideas of
Mathematics.
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Cassini Ovals

Vandita Shankar

Abstract

This paper discusses Cassini ovals which were discovered by Domenico Cassini

and were employed to study the relative motions between the Earth and Sun.

The paper focusses on the polar and Cartesian equation of the Cassinian curve

and its various applications in nuclear, solar and radar systems.

“There is geometry in the humming of strings, there is music in the spacing of

spheres”

1 Giovanni Domenico Cassini

Astronomer and Mathematician Giovanni Domenico Cassini is associated with a

number of scientific discoveries and projects, including the first observations of Sat-

urn’s moons. For this reason, the Cassini spacecraft that was launched in 1997 and

plunged into the planet in 2017 was named after him.

Giovanni Domenico was born on June 8, 1625, in Perinaldo, Republic of Genoa

(now Italy). He was the first of the well-known Cassini family of astronomers and is

sometimes referred to as Cassini I. He was the first to observe four of Saturn’s moons

Iapetus (1671), Rhea (1672), Tethys (1684) and Dione(1684) which he called Sidera

Lodoicea, or Louisian Stars, after the French king.

2 History of Cassini Ovals

The curve was first investigated by Giovanni Cassini in 1680 when he was study-

ing the relative motions of the Earth and Sun. He believed that the Sun travelled

round the Earth on one of these ovals, with the Earth at one focus of the oval.

1. Cassini assumed that the Earth is on one of the foci of the curve and the

Sun describes it in its proper motion in such a way that if you draw two lines

from the centre of the Sun to the two foci of the curve, the rectangle defined

by these lines is always equal to the rectangle defined by the larger and the

smaller distances between the Sun and the Earth.
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Figure 1: Giovanni Domenico Cassini

2. The Cassinian curve/oval is now a purely geometric curve because it is known

that planets describe Apollonian or ordinary ellipses. It is argued why Cassini

substituted the Cassinian oval (ellipse) over Kepler’s ellipse to study the rela-

tive motions between the Earth and Sun. However, it is known that most of

the planets describe ellipses with low eccentricity and that in an ellipse with

low eccentricity, the angular sectors created by vector rays from a focus are

almost proportional to the corresponding angles at the other focus.

3. The ratio between the infinitely small sector and the corresponding angle is like

the rectangle of two lines passing through the focus, and in an ellipse with low

eccentricity. Since the ratio between elementary sectors with corresponding

angles is like this rectangle, it will be constant in a curve where the rectangle

is constant. Therefore, he imagined the cassinoid.

3 Introduction to Cassini Ovals

The Cassini ovals are the locus of a point P that moves so that the product of its

distances from two fixed points S and T [in this case the points (+a, 0) and (−a, 0)

] is a constant c2. The shape of the curve depends on c
a .

If c > a then the curve consists of two loops. If c < a then the curve consists of

a single loop. The case where c = a it produces a Lemniscate of Bernoulli (a figure

of eight type curve introduced by Jacob Bernoulli ).

Cassinian ovals are anallagmatic curves. They are defined by the bipolar equa-

tion rr′ = k2.

1. The Cassini ovals are defined in two-center bipolar coordinates by the equation:

2



r1r2 = k2

2. The Cassini ovals have the Cartesian equation:

[(x− a)2 + y2][(x+ a)2 + y2] = b4

3. The Cassini ovals have the polar equation:

r4 + a4 − 2a2r2[1 + cos 2θ] = b4

4 Applications of Cassini Ovals

Cassinian curves have various scientific applications such as nuclear physics, bio-

sciences, acoustics, etc. Besides being a model for the orbit of planets, the multi

foci Cassini ovals add new dimensions to analytical geometry (coordinate geometry)

and other subjects related to mathematics beyond the prevailing concept of ellipse.

1. Formation of a Torus - By rotating the two-dimensional Cassini oval when√
2
2 < a

b < 1 around the vertical axis we get a three-dimensional shape of an

oblate disc sphere with a concavity on the top and bottom which resembles

a torus. By changing the parameters a and b we get different shapes having

different diameter, thickness and concavity. However, since those parameters

are not directly related with the thickness or diameter the influence is an

indirect one, therefore introducing a new parameter c we get a better flexibility

for changing the three dimensional shape.

2. Military and Commercial Purposes - The unique geometrical properties

derived from Cassinian Ovals are used for both military and commercial pur-

poses. A few examples are new generation bistatic radar and sonar systems,

modeling human red blood cells, simulating light scattering, modelling textile

fabric, modelling population growths etc.

(a) Bistatic and Multistatic Radars - Radar and sonar systems are cate-

gorized as monostatic, bistatic and multistatic systems. In both, bistatic

and multistatic radar and sonar systems the shape of the detection zone

of the system is modeled with the interior of Cassini ovals where the

source, receiver and the target forms a bistatic triangle. The multistatic

underwater sensor fields are optimized based on the shape and area of

the ovals.
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(b) Nuclear Science - The Cassini oval theory suggests that the electron

orbit will vary with the changes in the shape of the nucleus.

It clubs the two great concepts; the concept of classical physics, where an

electron behaves as a particle and moves in standard orbits around the

nucleus; and the concept of quantum mechanics which indicates the wave

property of the electron and also the probability of the electron clouds.

As another example to nuclear science, in the cross-sectional area of a nu-

clear magnetic resonance coil that used to induce electrically conductive

coil is modelled as a Cassini oval.

(c) Scattering of Light Particles - Cassini ovals are a good fit for the sim-

ulation of light scattering by small particles. Although there are a great

variety of methods to simulate the scattering which have been developed

over the years, the null-field method with discrete sources is applied to

analysis of light scattering by biconcave Cassini-like particles, which can

be described as oblate disc spheres with central concavities on their top

and bottom.

The appropriate mathematical description of the concave particle shapes

that are used to simulate the light scattering is easily done by Cassini

ovals.

(d) Modelling of Evolutionary Processes - Cassinian ovals are also used

to model evolutionary processes such as morphogenetic sequences as well

as to model the sub-atomic level and electro-magnetic activity in the case

of wires of equal current and direction.

(e) Optimization of Fuel Tanks - For optimization of the fuel tanks used

in Marshall Space Flight Centre, tank end closures are usually elliptically

shaped. However, Cassinian domes may provide as much volume as an

ellipse in a shorter length and with less discontinuity at the edges for a

total vehicle net weight saving.

(f) Modelling of Population Distribution - The ovals are also used as a

model of population distribution between two regions where the spatial

structures are given.

Such an example is the growth of population between the two metropoli-

tan cities, Beijing and Tianjin of China which is a distinct dual-nuclei

metropolitan area in the world. It is modelled by the a
b characteristic

index of Cassini ovals. In the study when a
b > 1, the population density

is more than 3000 persons/km2and when a
b = 1, the population density
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is about 3000 persons/km2.

5 Conclusion

Cassini ovals are related to ellipses but the former has product of the distances con-

stant which makes it an interesting multi foci curve. Cassini ovals are now a purely

geometric curve as the Kepler ellipses are utilised to study the relative motion be-

tween Sun and Earth.

This unique property enables these ovals to be utilized in various scientific, mili-

tary and commercial areas to model phonemes. Therefore, it is important to give

them greater importance so that more useful properties and analytical expressions

can be derived.
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The Man who believed in the Eternal Beauty of

Mathematics: G. H. Hardy

Richa Sharma

Abstract

This paper discusses the works of one of the greatest mathematicians ever,

G. H. Hardy. Be it his number theory, mathematical analysis or the

Hardy-Weinberg principle, the world can never forget his contributions to the

field of pure mathematics and his ideology of believing in the eternal beauty

lying in the subject of mathematics and the way he compared mathematics to

art and poetry through his essay on the aesthetics of mathematics, “A Mathe-

matician’s Apology”.

1 Early Life and Education

Godfrey Harold Hardy was born on the 7th of February, 1877 in the village of Cran-

leigh, near Guildford, in the country of Surrey. Hardy displayed a special talent and

interest in mathematics from an early age. When he was taken to church he passed

the time by factorizing the numbers of the hymns.

Hardy chose Cambridge and particularly Trinity because of its mathematical tradi-

tions, but for anyone aiming at a career in research it had little to offer compared

with what was available in Paris or Berlin. In particular the examination system

was desperately in need of reform. He rightly considered the Tripos1 an utter waste

of time and tried changing his course from mathematics to history. However, as he

writes in his memoir,

A Mathematician’s Apology:

“My eyes were first opened by Professor Love, who taught me for a few terms and

gave me my first serious conception of analysis. But the great debt I owe to him –

he was, after all, primarily an applied mathematician and it was his advice to read

Jordan’s Cours d’ Analyse: and I shall never forget the astonishment with which

I read that remarkable work, the first inspiration for so many mathematicians of

my generation, and learned for the first time as I read it what mathematics really

meant. From that time onwards, I was in my way a real mathematician with sound

mathematical ambitions and a genuine passion for mathematics.”

1the final honours examination for a BA degree at Cambridge University
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Figure 1: G H Hardy

2 Later Life and Contributions

Later, as a fellow Hardy was finally free to devote his time to pure mathematics, and

he did so with great enthusiasm and fervour. Over the next ten years he produced

several papers, which established his reputation as an analyst, and wrote his classic

textbook, A Course of Pure Mathematics.

In 1910, Hardy was elected as to the fellowship of the Royal Society of London.

Despite what many saw as a highly productive period between the years 1900 and

1910, he himself felt that he did not publish as much of real value in that decade, and

said so in the Apology as “ I wrote a great deal in the next ten years but very little

of any importance ; there are not more than five papers I can remember with some

satisfaction .” He believed his best work came afterwards, out of his association

with Littlewood and Ramanujan.

Hardy began his collaboration with Littlewood, who was eight years his junior, in

1911. The two men worked together mainly by correspondence, even when they

were living in the same college. Meanwhile, Hardy was growing discontented with

life in Cambridge and controversies arising from the First World War had much to

do with this. At Oxford, he reached the peak of his career, setting up a flourishing

research school. Hardy’s unorthodox views were appreciated at New College, of

which he automatically became a fellow. He spent 1928-29 as exchange professor at

Princeton and the California Institute of Technology, while Veblen came to Oxford

in his place. In 1913, Hardy returned to Cambridge as Sadleirian Professor of Pure

Mathematics, and was invited to become a fellow of Trinity again. The London

Mathematical Society occupied an important place in Hardy’s life. He served

on the council from 1905 to 1908 and from 1914 almost continuously until his final
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retirement in 1945. He was one of the secretaries from 1917 to 1945 and twice the

president, never missing a meeting.

In 1939, he suffered a coronary thrombosis, which put an end to sporting activities,

such as cricket and real (or royal) tennis, that he enjoyed so much. When he died,

on December 1, 1947, in his seventieth year, he was listening to his sister read to

him from a book about the history of cricket at Cambridge. Hardy was the recipient

of many honours, and from the Royal Society of London, first a Royal medal, then

the Sylvester medal and finally the Copley medal, which he was due to receive

on the day of his death.

3 Major Contributions

1. Hardy-Weinberg Law

This is an algebraic equation that describes the genetic equilibrium within a pop-

ulation. It was discovered independently in 1908 by Wilhelm Weinberg, a German

physician, and Godfrey Harold Hardy.

• The science of population genetics is based on this principle, which may be

stated as follows: in a large, random-mating population, the proportion of

dominant and recessive genes present tends to remain constant from generation

to generation unless outside forces act to change it.

• In such a way even the rarest forms of genes, which one would assume would

disappear, are preserved. The outside forces that can disrupt this natural

equilibrium are selection, mutation and migration.

• The law helped in affirming natural selection as the primary mechanism of

evolution. Certain gene-controlled traits are selected for or selected against by

the partners involved. Over a long period of time, this selective pressure will

change the frequency of appearance of certain gene forms, and the traits they

control will become commoner or rarer in the population.

• Medical geneticists can use the Hardy–Weinberg law to calculate the proba-

bility of human mating that may result in defective offspring. The law is also

useful in determining whether the number of harmful mutations in a popu-

lation is increasing as a result of radiation from industrial processes, medical

techniques, and fallout.

2.Hardy-Ramanujan Asymptotic Formula
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The Hardy-Ramanujan Asymptotic Partition Formula is stated as follows:

For a positive integer n, let p(n) denote the number of unordered partitions of n,

that is, unordered sequences of positive integers which sum to n; then the value of

p(n) is given asymptotically by -

p(n) ∼ [1/(4n
√

3)]× (eτ
√
n/6)

The value of p(7) is 15. By n = 70, the number has rises to over 4 million; the Hardy-

Ramanujan asymptotic estimate closely shadows this growth.Srinivasa Ramanujan

(1887 - 1920) had already made deep discoveries about the partition function when

he was himself ‘discovered’ by G.H. Hardy in 1913. Five years later, despite Ra-

manujan being already terminally ill, they published this remarkable asymptotic

formula, derived from a series which yields the exact value of p(n) in
√
n terms.

3. Hardy-Littlewood Conjectures

(a) k-Tuple Conjecture

The first of the Hardy–Littlewood conjectures, the k-tuple conjecture states that

the asymptotic number of prime constellations can be computed explicitly. In par-

ticular, unless there is a trivial divisibility condition that stops p, p + a1, ..., p + ak
from consisting of primes infinitely often, then such prime constellations will oc-

cur with an asymptotic density which is computable in terms of a1, ..., ak. Let

0 < m1 < m2 < ... < mk then the k-tuple conjecture predicts that the number

of primes p ≤ x such that p+ 2m1, p+ 2m2, ...., p+ 2mk are all prime is :

π(m1,m2, ...,mk)(x) ∼ C(m1,m2, ...,mk)
x∫
2

dt/(ln(k+1)t),

where,

C(m1,m2, ...,mk) = 2k
∏

q

(1− (w(q;m1,m2, ...,mk))/q)/((1− (1/q))(k+1))

,

the product is over odd primes q and w(q;m1,m2, ...,mk) denotes the number of

distinct residues of 0,m1, ...,mk(modq) (Halberstam and Richert 1974, Odlyzko et

al 1999). If k = 1 then this becomes:

C(m) = 2
∏

q;qprime

(q(q − 2))/((q − 1)2)
∏

q|m
(q − 1)/(q − 2)
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This conjecture is generally believed to be true, but has not been proven (Odlyzko

et al. 1999 ).

(b)Second Hardy-Littlewood Conjecture

In number theory, the second Hardy–Littlewood conjecture concerns the number of

primes in intervals. The conjecture states that:

π(x+ y) ≤ π(x) + π(y)

for x, y ≥ 2 , where π(x) denotes the prime-counting function, giving the number of

prime numbers up to and including x.

This means that the number of primes from x + 1 to x + y is always less than or

equal to the number of primes from 1 to y. This was proved to be inconsistent with

the first Hardy–Littlewood conjecture on prime k-tuples, and the first violation is

expected to likely occur for very large values of x. For example, an admissible k-

tuple (or prime constellation) of 447 primes can be found in an interval of y = 3159

integers, while π(3159) = 446. If the first Hardy–Littlewood conjecture holds, then

the first such k-tuple is expected for x greater than 1.5 × (10)174 but less than

2.2× (10)1198.

4. A Mathematician’s Apology

“ A Mathematician’s Apology”, first published in 1940 in England, is the memoir

of the world-renowned mathematician, G.H Hardy, written in the last few years of

his life while he was in failing health. The book is not mathematical; rather, it is

an affirmation of a career that happens to be mathematical and purely speculative.

A Mathematician’s Apology is a lasting testament to Hardy’s passion for intellectual

pursuits. He likens mathematics to art and explains mathematics in much the same

way a critic explains art. He elaborates on the qualities of mathematical genius

and the logical reasons for pursuing a career in mathematics, and he briefly outlines

three of the most basic and timeless theorems in order to illustrate the inherent

beauty of mathematics for the layperson.

Many of the chapters also address the differences between theoretical or ‘pure’ math-

ematicsto which Hardy dedicated his life and several types of ‘applied math’, which

he regards as largely inferior. The work also reveals the grave doubts Hardy har-

boured about the overall usefulness of his work and life.
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4 Conclusion

Although Hardy was highly regarded in his home country, he was perhaps still more

appreciated overseas, particularly in Germany. Hilbert thought of him as the best

mathematician of England, particularly when he was collaborating with Littlewood.

Hardy himself, with characteristic modesty, described Littlewood as the finest math-

ematician he had ever known; there was no-one else, he said, who could command

such a combination of insight, technique, and power. It may seem surprising that

there is not yet a full-scale biography of Hardy. Those who wish to know something

of his special flavour may be recommended to read the Apology, which he wrote

in 1940. This jewel of a book is still in print and has been translated into many

languages.
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Rigour in Mathematics

This section introduces advance Mathematics to the readers aiming at high standards of
proofs. It stimulates interest and lays the foundation for further studies in different

branches.
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Regression Analysis

Tulika Rawat

Abstract

Regression analysis is a statistical process for estimating the relationship

among variables .This paper deals with the properties and mathematical for-

mulas of regression analysis and also various forms of regression.

1 Regression Analysis

Regression analysis is a mathematical measure of the average relationship be-

tween two or more variables in terms of the original units of the data.In regres-

sion analysis there are two types of variables:

1. The variable whose value is influenced or is to be predicted is called de-

pendent variable. Dependent variable is also known as regressed or

explained variable.

2. The variable which influences the values or is used for prediction is called

independent variable or regressor or pedictor or explanatory

variable.

1.1 Linear Regression

If the variable in a bivariate distribution are related then the points in the scat-

ter diagram will cluster around some curve which is known as the Curve Of Regression

here the regression between the variables is said to be curvilinear.

If the curve is a straight line,it is called the line of regression and the variables

are said to possess Linear Regression.

The line of regression is the line which gives the best estimate to the value of

one variable for any specific value of other variable.Thus the line of regression

is called the line of Best Fit and is obtained by the principle of least squares.

1.2 Karl Pearson’s Coefficient Of Correlation

The degree of linear relationship between two random variables X and Y is

measured by a formula called correlation coefficient which is usually denoted
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by r(X,Y ) .

1.3 Lines Of Regression

In order to solve the problem of predicting ,for an individual, the value of one

variable(suppose y)from the given value of another variable (suppose x),we need

to express the relationship between y and x in mathematical form.

Suppose in a particular case the approximate relation may be represented by a

line:

Y = a+ bX

To get an appropriate line ,it is necessary to determine a and b from the observed

data. Let us assume that there are n given pairs of values of x and y, the ith

pair being denoted by (xi,yi).The above line gives as an estimate of xi the value

yi = a+ bxi(say)

The most satisfactory method of determining a and b would be the method of

least squares, which consists in minimising the sum of squares of the errors of

estimation. Therefore, we must choose a and b in such a way so that,

S2 =
∑

i

(yi − Yi)2

=
∑

i

(yi − a− xi)2

where,(yi − Yi) is the error of estimate for the ith pair,i = 1, 2, 3, ..., n. Here

we are using the method of least squares because since the line is to be used

for estimating purposes, it is reasonable to require that a and b such that these

errors of estimate are as small as possible.

As we know,

S2 =
∑

i

(yi − Yi)2

=
∑

i

(yi − a− xi)2

δS2

δa
≥ 0

δS2

δb
= 0
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or ∑

i

(yi − a− bxi) = 0

and multiplying on both sides by xi we get
∑

i

xi(yi − a− bxi) = 0

i.e. on summing over xi we get
∑

i

yi = na+ b
∑

i

xi

and again multiplying xi on both sides
∑

i

(xiyi) = a
∑

i

xi + b
∑

i

x2i

the roots of the equation are:

b =
n
∑
i(xi)(yi)− (

∑
i xi)(

∑
i yi)

(n
∑
i(xi)

2)− (
∑
i xi)

2

=

∑
i(xiyi)/n− (x̄)(ȳ)∑

i(xi)
2 − (x̄)2

=

∑
i(xi − x̄)(yi − ȳ)/n∑

i(xi − x̄)2/n

= r
σy
σx

a = y − bx
On substituting these values in equation y = a+ bx,we get,

y = y + r
σy
σx

(x− x)

This is the line of regression of y on x

a = ȳ − r σy
σx

= y − intercept

byx = r
σy
σx

= Slope

b is the amount by which the predicted value of y increases for a unit increment

in the value of x.

b=regression coefficient of y on x

Similarly,

x = x+ r
σx
σy

(y − y)

This is the line of regression of x on y, where r σx

σy
=

σy

rσx
bxy
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1.4 Properties Of Regression Coefficients

1. If one of the regression is greater than unity, the other must be less than

unity

byx > 1⇒ 1

byx
< 1

r2 ≤ 1⇒ byx.bxy ≤ 1

2. Correlation coefficient is the geometric mean between the regression coef-

ficients

r = ±
√
byx ∗ bxy

The sign of correlation coefficient must be similar to that of regression

coefficients.

3. The modulus value of the arithmetic mean of the regression coefficients is

not less than the modulus value of the correlation coefficients r .

|1
2

(byx + bxy)| > |r|

1.5 Angle Between Two Lines Of Regression

• The slopes of the lines are r
σy

σy
and

σy

rσx

• θ is the acute angle between the two lines regression

tan θ =

∣∣∣∣∣
r
σy

σx
− σy

rσx

1 + r
σy

σx

σy

rσx

∣∣∣∣∣

tan θ =

∣∣∣∣
r2 ≈ 1

r

∣∣∣∣
(

σx.σy
σ2
x + σ2

y

)

2 Curvilinear Regression

Sometimes the variability of Y is explained in a more better way using curvi-

linear regression rather than linear regression. Therefore, we fit the regression

line using the formula

Y = a+ b1X + b2X
2

Here by using the principles of the least squares we determine a, b1 and b2 to

constant such that the E is minimum i.e.

E =

n∑

i=1

(yi − a− b1xi − b2x2i )2

Equating the partial derivatives of E with respect to a,b and c separately, we

get the normal equation for estimating a, b and c as

δE

δa
= 0 = −2

∑

i

(yi − a− b1xi − b2x2i )
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δE

δb1
= 0 = −2

∑

i

xi(yi − a− b1xi − b2x2i )

δE

δb2
= 0 = −2

∑

i

x2i (yi − a− b1xi − b2x2i )

∑
yi = na+ b1

∑
xi + b2

∑
x2i

∑
xiyi = a

∑
xi + b1

∑
x2i + b2

∑
x3i

∑
x2i yi = a

∑
x2i + b1

∑
x3i + b2

∑
x4i

On solving this for a, b1 and b2 we get the parabola of best fit.

3 Multiple Regression

Whenever we are interested in studying the joint effect of a group of variables

upon a variable not included in that group, our study is that of multiple regression.

1. As in a bivariate data, here too, it may be that one of the p variables,

say x1, is of primary interest to us and we consider x2, x3, . . . , xp together

with x1, in view of their possible influence on the latter.

2. The object is to establish a relationship between dependant variable,

x1,and independant variables,x2, x3, . . . , xp, with the idea of using this

relationship for predicting the value of the regressand from a knowledge

of the values of the regressors.

Let us assume that the relationship between x1 and x2, x3, . . . , xp is given by

the following equation

x1 = a+ b2x2 + b3x3 + . . .+ bpxp

• Here our data consists of p values , corresponding to the p variables, for each

n individuals. The values of the variables for the αth individual may be denoted

by x1α, x2α, . . . , xpα, where α = 1, 2, . . . , n.

• In order to determine the constants a, b2, b3, b4, . . . , bp on the basis of the

data , we again make use of the least square method.

• We denote by x1.23...p the difference between x1 and x1.23...p = a + b2x2 +

b3x3+. . .+bpxp, then the error of estimation corresponding to the αth individual

is x1.23...p,α.

The least square method means that the constant a, b2, b3, . . . , bp are to be

so determined that
∑

α

x21.23...p,α =
∑

α

(x1α − a− b2x2α − . . .− bpxpα)2

is minimum.
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4 Example

Following records are available:

Regression equations:

8x− 10y + 66 = 0,

40x− 18y = 214,

σx=3.

Find the

1. mean values of x and y.

2. σy

3. coefficient of correlation

Solution

Since both the lines of regression pass through the point (x̄, ȳ), we have

8x̄− 10ȳ + 66 = 0

40x̄− 18ȳ − 214 = 0

Solving them, we have

x̄ = 13

and

ȳ = 17

Writing the regression lines as

y = 0.8x+ 6.6

and

x = 0.45y + 5.35,

We get regression coefficients

r
σy
σx

= 0.8

and

r
σx
σy

= 0.45

Multiplying them, r2 = 0.8 ∗ 0.45 = 0.364 or r=0.6.

Also,

r
σy
σx

= 0.8,

0.6 ∗ σy
3

= 0.8,

σy = 4
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5 Uses of regression analysis

1. A pharmaceutical company used regression to assess the stability of the

active ingredient in a drug to predict its shelf life and identify a suitable

expiration date for the drug.

2. A credit card company applied regression analysis to predict monthly gift

card sales and improve yearly revenue projections.

3. An insurance company used regression to determine the likelihood of a

true problem existing when a home insurance claim was filed, in order to

discourage customers from filing excessive or petty claims.

4. Regression Analysis can bring a scientific angle to the management of any

businesses by reducing tremendous amount of raw data into actionable in-

formation, regression analysis leads the way to smarter and more accurate

decisions.
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Applicability of Three Body Problem in Celestial

Mechanics

Dr. Bhavneet Kaur

1 Introduction

The three-body problem is one of the central problems in field of Celestial Mechan-

ics. It has many applications in different scientific areas, in particular, in the fields

of Astrophysics and Astrodynamics. The problem is classified in two classes: the

first one is the general problem which describes the motion of three celestial bodies

under their mutual gravitational attraction. The second class is the restricted prob-

lem in which the third body has an infinitesimal mass compared with masses of the

other two bodies and consequently it does not affect their motion.

One of the main applications of the general problem in Astrophysics is for instance

the dynamics of triple stars systems. In the second half of the 20th century and

even today. the study of scientific community has center its attention on the re-

stricted three-body problem and there are a big number of papers studying different

aspect of this problem. For instance, considering the influences of perturbed forces

such as oblateness, radiation pressure, Coriolis and centrifugal forces, variation of

masses, the Pointing Robertson effect, the atmospheric drag, the solar wind etc.

Significant studies related with the libration points considering the oblateness of

one or both primaries when the equatorial plane is coincident with the plane of

motion are done by [Subbarao and Sharma (1975)], [Sharma and Subbarao (1978)]

and [Markellos et al. (1996)].

Some works studying different aspects of the dynamics of the restricted problem

when the three participating bodies are oblate spheroids are given by

[El-Shaboury and El-Tantawy (1993)], [Abouelmagd and El-Shaboury (2012)] and

[Elipe and Ferrer (1985)]. Interesting papers when one or both primaries are triaxial

bodies are for instance [El-Shaboury et al. (1991)], [Khanna and Bhatnagar (1999)]

and [Sharma and Bhatnagar (2001)]. Several authors have been devoted their ef-

forts to study the effects of small perturbations in centrifugal and Coriolis forces as

[Szebehely(1967)], [Bhatnagar & Hallan(1978)], [Devi and Singh (1994)] and

[Shu et al. (2005)]. The existence and the linear stability of the libration points

in the restricted problem for perturbed potentials between the bodies in the cases:

the bigger primary is an oblate spheroid, both primaries are oblate spheroids, the

primaries are spherical and the biggest primary is a source of radiation were stud-
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ied in by B[Bhatnagar & Hallan(1979)]. They observed that the collinear points

are unstable, the range of stability for the triangular points increases or decreases

depending on the sign of a parameter which depends on the perturbed functions.

Furthermore, [Singh and Ishwar (1999)] studies the effect of the oblateness and the

radiation pressure at the locations of the triangular points and their linear stability

when both the primaries are oblate and radiating. [Ishwar and Elipe (2001)] found

the secular solutions at the triangular points in the generalized photogravitational

restricted three-body problem.

The problem is generalized in the sense that the bigger primary is a source of radi-

ation and the smaller one is an oblate spheroid. Moreover, [Abouelmagd et al. (2014a)]

found the secular solution around the triangular equilibrium points and reduce it

to a periodic solution in the frame work of the generalized restricted three-body

problem, in sense that both primaries are oblate and radiating as well as the grav-

itational potential from a belt. They also showed that the linearized equation of

motion of the infinitesimal body around the triangular equilibrium points has a sec-

ular solution when the value of the masses ratio is equal to the critical mass value.

Numerical and graphical analysis in order to understand the effects of the perturbed

forces are stated. [Mittal and Bhatnagar (2009)] studies the periodic orbits gener-

ated by Lagrangian solutions of the restricted three-body problem when the bigger

body is a source of radiationand the smaller is an oblate spheroid. It is used the def-

inition of [Karimov and Sokolsky (1989)] for mobile coordinates to determine these

orbits and the predictor method to draw them. [Singh and Begha (2011)] studied

the existence of periodic orbits around the triangular points in the restricted three

body problem when the bigger primary is triaxial and the smaller one is consid-

ered as an oblate spheroid. In the range of linear stability under the effects of the

perturbed forces of Coriolis and centrifugal, it is deduced that long and short peri-

odic orbits exist around these points and are stated their periods, orientation and

eccentricities affected by the non sphericity and the perturbations in the Coriolis

and centrifugal forces. [Abouelmagd (2012)] studied the effects of oblateness coef-

ficients J2 and J4 of the bigger primary in the planar restricted three-body prob-

lem on the locations of the triangular points and their linear stability. Recently,

there are also some interesting papers connected with the restricted three-body

problem, see [Beevi and Sharma (2012)], [Singh (2012)], [Singh and Taura (2013)],

[Kishor and Kushvah (2013)],[Abouelmagd et al. (2013)], [Abouelmagd (2013)] and

[Abouelmagd et al. (2014b)]. In last decades a great number of authors have stud-

ied the restricted three-body problem taking account the effects of oblateness of one
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or both primaries up to 10−3 of the main terms of the potential.

We now discuss about the Restricted three-body problem.

1.1 Restricted three-body problem (or Restricted Problem)

Statement: Two bodies revolve around their centre of mass in circular orbits under

the influence of their mutual gravitational attraction and a third body (attracted

by the previous two but not influencing their motion) moves in the plane defined by

the two revolving bodies. The restricted problem of three bodies is to describe the

motion of the third body.
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Figure 1: Configuration of the Restricted Three-Body Problem

In case, the primaries move in the elliptical orbits instead of circular orbits, the

problem is known as elliptical restricted three-body problem and in case the

third body is not moving in the plane of motion of the primaries, the problem is

called the three dimensional restricted three-body problem.

The restricted three-body problem has in the past played an essential role in

many different areas of dynamical astronomy and indications are that this will con-
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tinue. The applications of the restricted problem to the Celestial mechanics form

the basis of some lunar and planetary theories. The modern applications to space

mechanics are probably even more cogent if not more numerous than the classical

applications. The implications of the restricted problem for cosmology and stellar

dynamics are also numerous. Many problems in space dynamics are of considerable

importance and interest today. Many of these problems are new, and in what follows

one of them will be contrasted to a classical problem.

Consider the famous classical three-body problem, the sun-earth-moon combination

and the determination of the motion of the moon. We might think of two large bod-

ies, the sun and the earth, which move around each other in approximate circles,

and in their field a third body, the moon which moves on an approximate ellipse.

This configuration is stationary in a sense, since no collisions take place.This is also

true for the motion of a Trojan asteroid under the continued influence of Sun and

Jupiter. On the other hand, one of the central problems in space science is to cre-

ate artificial bodies. Sometimes collision orbits are desired. Problems with close

approaches and collisions were hardly even treated in Celestial mechanics and these

problems became important in the new science of space dynamics.

Euler was the first to contribute towards the restricted problem in 1772 in con-

nection with his Lunar Theories. His main contribution was the introduction of a

synodic (rotating) coordinate system resulting in what is called the Jacobi integral

which as discovered by [Jacobi(1836)]. Implications of this integral are numerous.

It determines the regions of motion. Its application to Celestial Mechanics was

first made by [Hill (1878)]. [Poincaré(1899)] and [Birkhoff (1915)] are the pioneers

in the qualitative methods of dynamics. Poincaré’s famous work in three volumes

’Methodes Nouvelles’ completed in 1899 was so new and original that many of its

implications are still not clear.

Lagrange also mentioned the special case of the restricted problem when the

Coriolis forces are omitted and a condition of symmetry regarding the masses of the

primaries is introduced, the restricted problem may be solved in terms of elliptic

functions. Prior to the lunar theory, in 1760, Euler gave the solution of the problem

of two fixed centres of force, in which two fixed masses act on the third body

according to Newton’s law of gravitation. This is a special case of the restricted

problem when both the Coriolis and the centrifugal forces are omitted. Euler’s

solution of the problem of two fixed centres of force can be used in connection

with the artificial satellite problem, and as a reference orbit for the calculation

of perturbations in the restricted problem.This study has paved way for a lot of

research in the field of Celestial Mechanics especially n-body problem.
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Extension of Course Contents

A great deal of learning happens beyond the formal coursework. This section hence aims
to provide a creative, fertile setting for productive research that goes beyond the confines
of classroom, and precincts of syllabi. It strengthens and expands the existing knowledge
and adds interests to the course and provides an experience of trans-formative learning.
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Symmetry Methods to Solve First Order ODEs:

Introduction to Lie Groups and Lie Symmetries

Kushagri Tandon

Abstract

This paper will be exploring the symmetry methods used in solving ordinary

differential equations with emphasis on Lie symmetry groups. Symmetries can

be used to determine a canonical coordinate system for a given differential equa-

tion. This paper will include an introduction to symmetries, introduction to lie

groups and application of lie point symmetries in solving first order ordinary

differential equations.

1 Introduction

Differential equations are used to model numerous phenomenon in the world. Study

of differential equations plays a vital role in the physical sciences. These equations

are often non-linear and solving them requires unique and creative methods. There

are many ingenious techniques for obtaining exact solutions of differential equations,

which work only for a very limited class of problems.

Sophus Lie, a Norwegian mathematician born in 1842, was the first to discover

the relationship between group theory and traditional methods for finding solution

curves.

He discovered way of using symmetries and groups of point transformatios to

solve differential equations.

It is often quite easy to find symmetries of a given differential equation (even

an unfamiliar one) and to use them systematically to obtain exact solutions. Sym-

metries can also be used to simplify problems and to understand bifurcations of

nonlinear systems.

1.1 Symmetries

A symmetry is a rigid mapping from an object to itself or another object. It must

preserve the structural properties of the original item. These mappings include

rotations, translations, and reflections.

Example, S3, the group of symmetries of a triangle.

Symmetries preserve structure. In other words, they must satisfy the symmetry

condition.
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In case of differential equations, satisfying the symmetry condition requires that

a symmetry maps one solution curve to another. The resulting solution curve must

also satisfy the original differential equation.

To illustrate symmetry in differential equations, consider the ordinary differential

equation
dy

dx
= 0 (Eq. 1.1)

The set of all solutions of the ODE is the set of lines y(x) = c, c ∈ R, which fills

the (x, y) plane. This solutions is represented by horizontal lines, seen in Figure 1.1.

Figure 1.1: Solutions of

equation (Eq. 1.1)

Lie symmetries are point transformations

that map a point on a solution curve in R2 to

another point on a solution curve in R2.

For a parameter λ ∈ R, a Lie symmetry is

given by,

Pλ : (x, y) 7→ (x̂, ŷ) (Eq. 1.2)

An example of symmetry of the equation (Eq.

1.1) is,

(x̂, ŷ) = (x, y + λ).

This symmetry will map a point (x, y) on one solution curve to a point (x̂, ŷ) on

another.

A trivial symmetry maps every solution curve to itself. For instance, a trivial

symmetry of the equation (Eq. 1.1) is,

(x̂, ŷ) = (x+ λ, y)

This symmetry does not map to another solution curve, because the point (x̂, ŷ)

is on the same solution curve as (x, y). An equilateral triangle has a finite set of

symmetries. Many objects have an infinite set of symmetries. For example, the

(rigid) unit circle x2 + y2 = 1 has a symmetry,

Γε : (x, y) 7→ (x̂, ŷ) = (x cos ε− y sin ε, x sin ε+ y cos ε), ∀ε ∈ (−π, π] (Eq. 1.3)

In terms of polar coordinates, Γε : (cos θ, sin θ) 7→ (cos(θ + ε), sin(θ + ε)) as shown

in Figure 1.2. Hence the transformation is a rotation by ε about the centre of the

circle. It preserves the structure, and it is smooth and invertible (the inverse of a

rotation by ε is a rotation by −ε. Note that x̂2 + ŷ2 = x2 + y2 = 1
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Figure 1.2: Rotation of the unit circle.

1.2 Lie Groups

A Lie group is a group of symmetries with a parameter λ ∈ R. Lie group symme-

tries are the functions Pλ from R2 to R2.

Let A be a set of points (x, y) ∈ R2 and let B be a set of points (x̂, ŷ) ∈ R2.

A function Pλ maps A to B:

Pλ : A 7→ B

Here, x̂ = f(x, y, λ) and ŷ = g(x, y, λ)

The identity, I in a Lie symmetry group maps a point to itself. A set of symme-

tries forms a Lie group if it meets the following conditions:

1. Pλ is a bijection i.e. Pλ is a symmetry

2. Pλ1 ◦ Pλ2 = Pλ1+λ2 i.e. the set of symmetries is closed under composition of

mappings.

3. P0 = I is the identity of the set of symmetries.

4. ∀λ1 ∈ R, ∃λ2 = −λ1 s.t. Pλ1 ◦ Pλ2 = Pλ2 ◦ Pλ1 = P0 = I i.e. each point

symmetry has an inverse in the set of symmetries.

The infinite set of symmetries Γε (Eq. 1.3) is an example of a one-parameter Lie

group. The following is another example of a Lie group that is a symmetry for the

equation (Eq. 1.1):

Pλ : (x, y) 7→ (x̂, ŷ) = (x, eλy)

This is a symmetry because it maps a point on one solution curve of the equation

(Eq. 1.1) to a point on another solution curve of the equation (Eq. 1.1).
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2 Symmetry Condition

The total derivative operator is important for understanding the symmetry con-

dition. The total derivative operator is:

Dx = δx + y′δy + y′′δy′ + · · · (Eq. 2.1)

In general, we are working with differential equations of the form:

dy

dx
= ω(x, y) (Eq. 2.2)

In order to satisfy the symmetry condition, the point (x̂, ŷ) must also be on a solution

curve to the differential equation (Eq. 2.2),

∴ dŷ

dx̂
= ω(x̂, ŷ) (Eq. 2.3)

Written with the derivative operator, the equation (Eq. 2.3) is,

dŷ

dx̂
=
Dxŷ

Dxx̂
=
ŷx + dy

dx ŷy

x̂x + dy
dx x̂y

= ω(x̂, ŷ)

From equation (Eq. 2.3) we know that dy
dx = ω(x, y),

∴ ŷx + ω(x, y)ŷy
x̂x + ω(x, y)x̂y

= ω(x̂, ŷ) (Eq. 2.4)

The equation (Eq. 2.4) can be used in a few cases to determine the symmetries of

a differential equation.

For example, consider
dy

dx
= y (Eq. 2.5)

The symmetry of this equation should satisfy the equation (Eq. 2.4). In fact, it

should satisfy,
ŷx + yŷy
x̂x + yx̂y

= ŷ (Eq. 2.6)

We need to solve the equation for x̂ and ŷ to obtain the symmetry of the differential

equation.

Let us assume that x̂ = x̂(x, y) and ŷ = y.

Hence, the equation (Eq. 2.6) becomes,

y

x̂x + yx̂y
= y =⇒ y = y(x̂x + yx̂y)
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As long as y 6= 0,

1 = x̂x + yx̂y (Eq. 2.7)

Since x̂x = 1 and x̂y = 0, the following symmetry will satisfy the equation (Eq. 2.4)

(x̂, ŷ) = (x+ λ, y), λ ∈ R

2.1 Orbits

Orbits are an essential tool for solving differential equations using symmetry meth-

ods. Suppose, there is a point A on a solution curve to a differential equation. Under

a given symmetry, the orbit of A is the set of all points that A can be mapped to

for all possible values of λ.

3 New Coordinate system

As λ ∈ R varies under a given symmetry Pλ : (x, y) 7→ (x̂, ŷ), a point A travels along

its orbit. The tangent vectors to an orbit under a given symmetry are crucial to

determining the new coordinate system (r(x, y), s(x, y)).

3.1 Tangent Vectors

Tangent vector to orbits at the point (x̂, ŷ) are described by the tangent vector in

the x direction, denoted by ξ(x̂, ŷ) and the tangent vector in the y direction, denoted

by η(x̂, ŷ). Thus,
dx̂

dλ
= ξ(x̂, ŷ);

dŷ

dλ
= η(x̂, ŷ)

(
dx̂

dλ

∣∣∣∣
λ=0

,
dŷ

dλ

∣∣∣∣
λ=0

)
= (ξ(x, y), η(x, y))

The tangent vectors are useful for finding invariant solution curves1. In an invariant

solution curve the derivative at the point (x, y) will point in the direction of the

tangent vectors to the orbit. As λ varies, the point is mapped to another point on

the same solution curve.

∴ dy

dx
= ω(x, y) =

η(x, y)

ξ(x, y)

1An invariant solution curve is always mapped to itself under a symmetry. The points on an

invariant solution curve are mapped either to themselves or to another point on the same curve
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Peter E. Hydon defines characteristic Q as,

Q(x, y, y′) = η(x, y)− y′ξ(x, y) (Eq. 3.1)

Since, dydx = ω(x, y), we can rewrite the equation (Eq 3.1) as the reduced characteristic

Q̄ as,

Q̄(x, y, y′) = η(x, y)− ω(x, y)ξ(x, y)

A solution curve y = f(x) is invariant if and only if Q(x, y, y′) = 0 when y = f(x).

The Lie symmetries are trivial if and only if Q(x, y, y′) is identically zero, that

is, η(x, y) ≡ ω(x, y)ξ(x, y).

3.2 Canonial Coordinates

If a differential equation has a symmetry of the form (x̂, ŷ) = (x, y+ λ), then it can

be reduced to quadrature and can be solved by an integrating technique. However,

not all differential equations have a symmetry of this form in Cartesian coordinates.

Therefore, one can change to a new coordinate system in (r(x, y), s(x, y)) to obtain

a symmetry: Pλ : (r, s) 7→ (r̂, ŝ) = (r, s + λ). The tangent vectors at (r, s) when

λ = 0 are
dr̂

dλ

∣∣∣∣
λ=0

= 0;
dŝ

dλ

∣∣∣∣
λ=0

= 1 (Eq. 3.2)

Applying the chain rule to the equation (Eq. 3.2) we get,

dr̂

dλ

∣∣∣∣
λ=0

=
dr̂

dx

dx

dλ

∣∣∣∣
λ=0

+
dr̂

dy

dy

dλ

∣∣∣∣
λ=0

=
dr

dx
ξ(x, y)+

dr

dy
η(x, y) = rxξ(x, y)+ryη(x, y) = 0

(Eq. 3.3)

and

dŝ

dλ

∣∣∣∣
λ=0

=
dŝ

dx

dx

dλ

∣∣∣∣
λ=0

+
dŝ

dy

dy

dλ

∣∣∣∣
λ=0

=
ds

dx
ξ(x, y)+

ds

dy
η(x, y) = sxξ(x, y)+syη(x, y) = 1

(Eq. 3.4)

The change of coordinates should be invertible in some neighbourhood of (x, y), so

we impose the nondegeneracy condition,

rxsy − rysx 6= 0 (Eq. 3.5)

This condition ensures that if a curve of constant s and a curve of constant r meet at

a point, they cross one another transversely. Any pair of functions (r(x, y), s(x, y))

satisfying the equations (Eq. 3.3), (Eq. 3.4) and (Eq. 3.5) is called a pair of
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canonical coordinates. Using the method of characteristics, we can write sym-

metric equations for the equation (Eq. 3.3) as,

dx

dt
= ξ,

dy

dt
= η,

dr

dt
= 0 =⇒ dx

ξ
=
dy

η
(Eq. 3.6)

Similarly, we can write symmetric equations for the equation (Eq. 3.4) as,

dx

dt
= ξ,

dy

dt
= η,

ds

dt
= 1 =⇒ dx

ξ
=
dy

η
= ds (Eq. 3.7)

Consider, the function φ(x, y), the first integral of a differential equation:

dy

dx
= f(x, y) (Eq. 3.8)

Therefore, φ(x, y) = c, where c is a constant.2. Applying first derivative operator

to φ(x, y), we get,

φx + f(x, y)φy = 0, φy 6= 0 (Eq. 3.9)

If we divide the equation (Eq. 3.3) by ξ(x, y), we get

rx
ξ(x, y)

ξ(x, y)
+ ry

η(x, y)

ξ(x, y)
= 0, ξ(x, y) 6= 0 =⇒ rx + ry

η(x, y)

ξ(x, y)
= 0

Comparing the result with equation (Eq 3.9), we find that r(x, y) is a first integral

of
dy

dx
=
η(x, y)

ξ(x, y)
, ξ(x, y) 6= 0

Therefore, r(x, y) = c, where c is a constant. To find s we use equation (Eq. 3.7):

dx

ξ(x, y)
=

dy

η(x, y)
= ds =⇒ s =

∫
dx

ξ(x, y)
=

∫
dy

η(x, y)

If ξ(x, y) = 0 then, r(x, y) = x and s =
∫ dy
η(x,y)

4 Solving ODEs with Lie Symmetries

We need to write the differential equation in terms of r and s in order to solve it.

Then, put the solution back into Cartesian coordinates. To find ds
dr , apply the total

derivative operator to get
ds

dr
=
sx + ω(x, y)sy
rx + ω(x, y)ry

(Eq. 4.1)

2First integrals are nonconstant functions whose value is constant along solution curves of the

equation (Eq. 3.8)
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This will result in an equation ds
dr written in terms of x and y. To write it in terms

of r and s, solve the coordinates r(x, y) and s(x, y) for x and y, then simplify. From

there, solve the equation and put the solution back into Cartesian coordinates.

4.1 The Linearized Symmetry Condition

In practice, it is difficult to find a symmetry that works for a given differential

equation. In order to find the symmetry it is necessary to solve the symmetry

condition given in equation (Eq. 2.4)

ŷx + ω(x, y)ŷy
x̂x + ω(x, y)x̂y

= ω(x̂, ŷ)

This equation gives the symmetry (x, y) 7→ (x̂, ŷ). In general, this is a complicated

nonlinear partial differential equation in the two unknowns x and y.

Therefore, it is necessary to use a linearized symmetry condition to find ξ(x, y)

and η(x, y).

We can linearize the symmetry condition using a Taylor series expansion. We

can expand x̂ , ŷ and ω(x̂, ŷ) around λ = 0,

x̂ = x+ λξ(x, y) +O(λ2) (Eq. 4.2)

ŷ = y + λη(x, y) +O(λ2) (Eq. 4.3)

Here, O(λ2) denotes the error function in the Taylor series expansion of x̂,ŷ and

ω(x̂, ŷ). To simplify notation, the arguments (x, y) will be omitted from ξ, η

and ω from now on.

On substituting the equations (Eq. 4.2) and (Eq. 4.3) in symmetry condition

(Eq. 2.4), we get:

ω + λ(ηx + ωηy) +O(λ2)

1 + λ(ξx + ωξy) +O(λ2)
= ω(x+ λξ +O(λ2), y + λη +O(λ2)) (Eq. 4.4)

We now expand each side of equation (Eq 4.4) as a Taylor series about λ = 0,

assuming that each series converges.

ω + λ{ηx + (ηy − ξx)ω − ξyω2}+O(λ2) = ω + λ{ξωx + ηωy}+O(λ2) (Eq. 4.5)

This condition is necessarily satisfied at λ = 0, which corresponds to the trivial sym-

metery (x̂, ŷ) = (x, y). Equating the O(λ2) terms gives the linearized symmetry

condition,

ηx + (ηy − ξx)ω − ξyω2 = ξωx + ηωy (Eq. 4.6)
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The linearized symmetry condition can be rewritten in terms of the reduced char-

acteristic, Q̄ = η − ωξ as follows,

Q̄x + ωQ̄y = ωyQ̄ (Eq. 4.7)

Each solution of the equation (Eq. 4.7) corresponds to infinitely many Lie groups, for

if Q̄ satisfies the equation (Eq. 4.7) then (ξ, η) = (η, Q̄+ωξ) is a tangent vector field

of a one-parameter group, for any function ξ .All trivial Lie symmetries correspond to

the solution Q̄ = 0 of the equation (Eq. 4.7). In principle, the nontrivial symmetries

can be found from the equation (Eq. 4.7) by using the method of characteristics.

5 Example

dy

dx
=
y

x
+ x (Eq. 5.1)

Solution:

Substituing the equation (Eq. 5.1) into the linearised symmetry condition, we

get

ηx + (ηy − ξx)
(y
x

+ x
)
− ξy

(y
x

+ x
)2
− ξ

(
1− y

x2

)
− η

(
1

x

)
= 0

In its current form, solving the equation is a very difficult task. Therefore, we can

make an ansatz about ξ and η. Suppose that ξ = 0 and η is a function of x only.

Then we get,

ηx −
η

x
= 0 =⇒

∫
dη

η
=

∫
dx

x
=⇒ ln η = lnx+ c0 =⇒ η = cx

Now we can find the canonical coordinates r and s. Recall from Section 3.2 that

when ξ(x, y) = 0, r = x. To find s we can solve,

ds =
dy

η

Therefore,

s =

∫
dy

η
=

∫
dy

cx
=

y

cx

Now set c = 1 to get,

(r(x, y), s(x, y)) =
(
x,
y

x

)

and

sx = − y

x2
, sy =

1

x
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Now we can substitute r and s into the equation (Eq. 4.1) to obtain

ds

dr
=
− y
x2

+ 1
x

( y
x + x

)

1
= 1

Therefore, s = r + k, where k is a constant. Substituting x and y back in, we get

y

x
= x+ k

and general solution of equation (Eq. 5.1) is y = x2 + kx.

6 Conclusion

This article describes the method to solve first order ordinary differential equations

using Lie Symmetry groups. These methods are extended to solve higher order

ordinary differential equations. It is often quite easy to find symmetries of a given

differential equation (even an unfamiliar one) and to use them systematically to

obtain exact solutions. Symmetries can also be used to simplify problems and to

understand bifurcations of nonlinear systems.
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Interdisciplinary Aspects of Mathematics

Mathematics is just not a classroom discipline but a tool for organizing and understanding
various concepts and applications. This section covers topics that delve into other

disciplines, integrating the mode of thinking and knowledge of the respective discipline
with Mathematics. The section hence highlights the cosmic scope of Mathematics,

leveraging its amalgamation with other disciplines.
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Capital Asset Pricing Model

Namrata Lathi

Abstract

This paper discusses about Capital Asset Pricing Model, a tool used in

finance to determine a theoretically required rate of return of an asset by taking

into account the asset’s sensitivity to non-diversifiable risk. This paper also

demonstrates the derivation of the CAPM Model.

1 About the Model

A fundamental question in finance is how the risk of an investment should affect its

expected return. The Capital Asset Pricing Model provided the first coherent

framework for answering this question. It was developed in the early 1960s by

William Sharpe (1964), Jack Treynor (1962), John Lintner (1965) and Jan Mossin

(1966) independently.

The Capital Asset Pricing Model describes the relationship between systematic

risk and expected return for assets, particularly stocks. It explains variations

in the rate of return on a security as a function of the rate of return on a market

portfolio.

The model says that the investors need to be compensated in two ways: time value

of money and risk. The time value of money is represented by the risk-free

rate i.e. the iterest rate on government securities like Treasury bills. The risk

is calculated by taking a risk measure-beta.Beta reflects how risky an asset is

compared to overall market risk.

2 Some basic concepts related to the model

1. Investors face two kinds of risks: systematic risk and unsystematic risk

2. Systematic Risk- It is the risk of recession, enactment of unfavorable regu-

lation, etc.

3. Unsystematic Risk - It is the risk specific to a particular investment. For

example, major disruption in the companys supply chain

4. Diversification of portfolio reduces variability. This is because prices of differ-

ent stocks generally don’t move together. An increase in one is offset by the

decrease in another.
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5. Expected return on a market portfolio = weighted average of the expected

returns on the individual stocks

6. Variability of portfolio is determined using variance and standard devia-

tion

3 Assumptions of the Model

All investors-

• are wealth maximizers

• can borrow or lend unlimited amounts at a risk free rate

• have the same expectations from the market

• are price takers i.e. they cannot influence prices

• trade without transaction or taxation costs

• deal with securities that are fully divisible

• assume all information is available at the same time to all investors

4 The CAPM Model

ra = rf + βa(rm − rf )

where rf = Risk free rate

βa = Beta of the security

rm = Expected market return

(rm − rf ) = Equity market premium

5 Calculation of Beta (β)

Beta is the measure of sensitivity of change in price of a security in relation to

changes in the overall stock market. It is a function of the volatility of the asset

and the market as well as the correlation between the two.

It is calculated as follows-
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β = σim
σ2
m

where σim is the covariance between the stock returns and market returns and

σ2m is the variance of the returns on the market

6 Derivation of the Model

Efficient Frontier

It is the locus of all the efficient portfolios i.e. the locus of all those portfolios which

offer the highest expected return for any level of risk. In other words, we can also say

that it is the locus of all those feasible portfolios which have the smallest variance

for a prescribed expected return.

Suppose-

• there are m risky securities

• expected return on ith security = µi

• covariance of return between the ith and jth security = σij

• variance of return on the ith security = σii= σ2i , σ
2
i > 0

• δi = percentage of the value of a portfolio invested in the ith security, hence∑m
1 δi = 1

• no security can be represented as a linear combination of the other securities,

i.e. the variance-covariance matrix of returns, Ω = [σij ], is non-singular

Thus, the frontier can be described as the set of portfolios which satisfy the con-

strained minimization problem,

Minimize Z =
1

2
σ2 (1)

s.t. σ2 =

m∑

i=1

m∑

j=1

δiδjσij (2)

µ =

m∑

i=1

δiµi (3)

m∑

1

δi = 1 (4)

Using Lagrangian multipliers λ1 and λ2 we can rewrite above equation as
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min 1
2

∑m
i=1

∑m
j=1 δiδjσij = λ1(µ−

∑m
i=1 δiµi) + λ2(1−

∑m
1 δi)

A critical point occurs where the partial derivatives of above equation w.r.t. δ1, ...., δm, λ1andλ2
are equal to 0 i.e.

0 =

m∑

1

σjσij − λ1µi − λ2, i = 1, ....,m (5)

0 = µ− σm1 δiµi (6)

0 = 1−
m∑

1

δi (7)

Further, the δ’s which satisfy the above set of equations minimize σ2 and are unique

on the assumption on Ω.

As the above set of equations 5, 6, 7 are linear in the δ′s and hence we have from

equation 5 that

δk = λ1

m∑

1

Vkjµj + λ2

m∑

1

Vkj , k = 1, 2, ...,m (8)

where the Vij are defined as the elements of the inverse of the variance-covariance

matrix, i.e. Ω−1 = [Vij ]

Multiplying equation 8 by µk and summing over k = 1, 2, ...,m we have that

m∑

1

δkµk = λ1

m∑

1

m∑

1

Vkjµjµk + λ2

m∑

1

m∑

1

Vkjµk, k = 1, 2, ...,m (9)

and by summing equation 8 over k = 1, 2, ...,m, we have that

m∑

1

δk = λ1

m∑

1

m∑

1

Vkjµj + λ2

m∑

1

m∑

1

Vkj (10)

Define

A=
∑m

j=1

∑m
k=1 Vkjµj

B=
∑m

j=1

∑m
k=1 Vkjµjµk

C=
∑m

j=1

∑m
k=1 Vkj

From equations 6,7,9 and 10, we have a simple linear system of λ1 and λ2
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µ = Bλ1 + Aλ2 (11)

1 = Aλ1 + Cλ2 (12)

where due to the symmetry of the variance-covariance matrix we find that

∑m
j=1

∑m
k=1 Vkjµk =

∑m
j=1

∑m
k=1 Vkjµj

and that B > 0, C < 0 andD > 0

Solving eqn 11 and 12 for λ1 and λ2, we get

λ1 =
Cµ−A
D

(13)

λ2 =
B −Aµ
D

(14)

where D = BC −A2 > 0

By solving the optimization problem we can thus find the efficient frontier in the

σ2 − µ space:

σ2p =
Cµ2p−2Aµp+B

D

This implies

σp =

√
Cµ2p−2Aµp+B

D

This is the equation of a hyperbola.

Also

d2σ
dµ2

= 1
Dσ3 > 0

This implies σ is strictly convex function of µ.

So, the graph of efficient frontier is as follows-

41



Figure 1: The efficient Frontier in the σ-µ space is the upper part of a hyperbola

with the asymptotes µ1 and µ2

Now as per assumption 2, the investors can borrow and lend money at the risk-

free interest rate rf .

This means if the investor invests some money in T-Bills and place the remainder

in common stock portfolio T, she can obtain any combination expected return and

risk along the straight line joining rf and T as shown in the following figure:

Figure 2: Investment opportunities

This is because:

The return, expected return and standard deviation of return on portfolios of the

risk-free asset f and a risky portfolio g vary with x, the proportion of portfolio funds

invested in f , as
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Rp = xRf + (1− x)Rg

E(Rp) = xRf + (1− x)E(Rg)

σ(Rp) = (1− x)σ(Rg), x < 1

which together imply that the portfolios plot along the line from Rf through T

The best portfolio is the one that lies at the tangency point of the straight

line to the efficient frontier.

The tangent line from the intercept point on the efficient frontier to the place where

the expected return on a holding equals the Rf is called Capital market Line.

Now, the relationship between risk and expected return from T-Bills and the

market portfolio can be plotted as follows-

.

So, for any portfolio lying on the line, expected return Rp will be equal to:

Rp = Rf +
Rm−Rf

σm
σp

whereRp is the return on an efficient portfolio

Rf is the risk-free rate

Rm is the return on the market portfolio

σm is the standard deviation of returns on the market portfolio

σp is the standard deviation of returns on efficient portfolio p
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Now, as CML is a straight line,

⇒ efficient portfolios that plot along CML are perfectly correlated i.e. ρpm = 1,

hence the above equation can be written as -

Rp = Rf +
(Rm −Rf )ρpm

σm
σp

where: ρpm is the correlation coefficient between the return of portfolio p and that

of the market.

Rp = Rf +
ρpmσp
σm

(Rm −Rf )

= Rf +
ρpmσp σm

σ2m
(Rm −Rf )

= Rf +
Cov(Rp.Rm)

σ2m
(Rm −Rf )

Rp = Rf + βp(Rm −Rf )

This is the CAPM Model.

7 Conclusion

The version of the CAPM developed by Sharpe (1964) and Lintner (1965) has never

been an empirical success. It suffered various criticisms because of its assumptions

like assuming β as a constant, use of historical data as input, assuming all investors

have same information, assuming variance of returns as an adequate measurement

of risk and a few more.

Despite this, the CAPM is a very well established model for practical problems. It is

favored for its simplicity. It serves as an effective tool for teaching the fundamental

concepts of portfolio theory and asset pricing.
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Latin Squares: Recreation, Disproving Euler to

Cryptography

Jaya Sharma

Abstract

This paper discusses about the concept of Latin Squares. It gives an account

of their history and mathematical developments. Their practical applications

in technology, statistical analysis and puzzles have also been explained.

1 Euler, Orthogonality and Latin Squares

Late in his life, Euler wrote a long paper on a simple puzzle:

Consider a group of 36 officers of 6 different ranks, taken from 6 different regi-

ments. Your task is to arrange them in a square such that in each row and colum,

there are 6 officers of each rank and regiment.

We define a “Latin square”as an n × n matrix of n symbols (or order n),

such that each symbol occurs exactly once in every row and column. Each dis-

tinct rank, and similarly each regiment, is denoted by a natural number from 1 to n .

Consider two Latin squares A and B (separately arranged for ranks and regi-

ments). Let aij and bij denote the entries in the ith row and the jth column of A

and B respectively. Then A and B are said to be “mutually orthogonal Latin

squaress”(MOLS ) if the n2 ordered pairs (aij , bij) are distinct and all 2n entries

(n ranks and n regiments) are found in each row and column. The square obtained

by superposing 2 MOLS (as shown below) shall be be called a “Graeco-Latin

Square”.




3 1 2

2 3 1

1 2 3


 +




3 2 1

2 1 3

1 3 2


 =




(3, 3) (1, 2) (2, 1)

(2, 2) (3, 1) (1, 3)

(1, 1) (2, 3) (3, 2)




Fig 1: Obtaining Graeco-Latin Square of order 3

Hence the solution of Euler’s problem was to find a pair MOLS of order 6 .

Euler could find MOLS when n = 3, 4, 5, odd or divisible by 4, but not for n = 2, 6.

He went on to conjecture that no solutions existed for orders n = 4k + 2, kεN . In
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fact it wasn’t until 1900 that the conjecture was proven for n = 6.

[
(1, 2) (2, 1)

(2, 1) (1, 2)

]
,




(1, 1) (2, 4) (3, 2) (4, 5) (5, 3)

(2, 2) (3, 5) (4, 3) (5, 1) (1, 4)

(3, 3) (4, 1) (5, 4) (1, 2) (2, 5)

(4, 4) (5, 2) (1, 5) (2, 3) (3, 1)

(5, 5) (1, 3) (2, 1) (3, 4) (4, 2)




Fig 2: Only possible case when n = 2, Graeco-Latin Square for n = 5

2 Further Developments and Disproving Euler

2.1 Mac Neish’s Conjecture

Let n(k) and N(k) denote the minimum and maximum number of MOLS of order

k, respectively. H. F. MacNeish [1922] showed that the value n(k) would be one

less than the smallest prime number that appears when k is written out

as a product of its prime factors. Later MacNeish conjectured that N(k) =

n(k). Thus, if true, MacNeish’s conjecture would imply Euler’s conjecture to be

correct.

However in 1958, E. T. Parker disproved the conjecture by showing that there exist

at least three MOLS of order 21 (there should be at most 2 according to MacNeish’s

conjecture). This result although didn’t disprove Euler’s conjecture, threw serious

doubts on it.

2.2 Final Solution

The impetus of Parker’s work led Raj C. Bose, who was Professor of Statistics at the

University of North Carolina, to develop some powerful general methods (by using

concepts like finite groups and fields, difference sets, orthogonal arrays and tools

in experimental design, especially the “incomplete block designs”) for construction

of higher order Graeco- Latin Squares. Bose and S. S. Shrikhande (his student)

succeeded in applying these methods to the construction of a Graeco-Latin Square

of order 22 . Euler’s conjecture was at last proven false.

By refining results and further use of other designs in statistically controlled

experiments, it was later proven false for all values of n = 4k + 2 > 6. Parker also
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Fig 3: As Reported on front page of NYTFig 4: A Graeco-Latin square of order 10

developed a new method of constructing an infinite series of Graeco-Latin Squares

of orders 10, 14, etc.

3 Applications of Latin Squares

3.1 Agronomic And Medical Research

MOLS are useful in the design of experiments wherever there are many variables

involved. Consider testing the effects of n different agricultural fertilisers on the

growth of n different crops. So, we can divide the field into cells of a n × n square

and apply the fertilisers and plant crops in the pattern of MOLS of order n. Square

hence obtained would show the combinations of crop and fertiliser applied in each

cell. Because of this pattern, one can use statistical analysis to eliminate the bias

due to variation in natural soil fertility along a row or column of the field. They are

also widely used in medical research and biological research. For example, one may

need to test a medical treatment for its efficacy on patients of different age, weight,

stages of a disease etc. A similar statistical experiment method called “Balanced

Incomplete Block Designs ”is also used.

3.2 Error Correcting Codes

Orthogonal Latin squares are used as error correcting codes in situations where

communication is disturbed by noise. A letter in the message to be sent is encoded

by sending a series of signals at different frequencies at successive time intervals.

In the example below, the letters A to H are encoded by sending signals at four

different frequencies, in four time slots. The letter C, for instance, is encoded by

48



first sending at frequency 3, then 4, 1 and 2. The encodings of the eight letters

are formed from MOLS.




(A) 1 2 3 4

(B) 2 1 4 3

(C) 3 4 1 2

(D) 4 3 2 1







(E) 1 3 4 2

(F ) 2 4 3 1

(G) 3 1 2 4

(H) 4 2 1 3




Fig 5: Encoding of letters at different frequencies

Now imagine that there’s added noise in channels 1 and 2 during the whole

transmission. The letter A would then be picked up as: 12 12 123 124. Because

of the noise, we can no longer tell if the first two slots were 1,1 or 1,2 or 2,1 or

2,2 . But inferring from the table of encodings, 1,2 case is the only one that yields

a matching letter in the above table. Hence the letter A has been identified and

recovered. Similarly, we may imagine a burst of static over all frequencies in the

third slot for A:1 2 1234 4. Again we can easily infer the letter being sent. The

number of errors this code can spot is one less than the number of time slots.

It has also been proven that if the number of frequencies is a prime or a power of a

prime, MOLS produce error detecting codes that are most efficient.

3.3 Cryptography

Latin Squares are used as codes. Two MOLS are taken and letters or symbols

are assigned to each of the co-ordinates. Then the sender encrypts the message by

substituting each letter/symbol with the corresponding co-ordinates.The

receiver then decrypts the message by using the MOLS, since every co-ordinate oc-

curs only once. Unless a third party knows the two MOLS used and which letters

correspond to which co-ordinates, its impossible to decrypt, making it an effective

coding system. For example, consider the Graeco-Latin Square and the letter ma-

trix:




(1, 3) (2, 1) (3, 2)

(2, 2) (3, 3) (1, 1)

(3, 1) (1, 2) (2, 3)






D C I

B H A

G F E




Fig 6: Encoding using a Graeco-Latin Square

Then to send the word ‘BAG’ one could just send the string of co-ordinates (2,

2)(1, 1)(3, 1).
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With larger MOLS, more letters and symbols could be encrypted. There is also

more secrecy because the number of pairs of MOLS increases exponentially

as the value of n gets higher. Latin Squares are also used in ciphers and cryp-

tographic functions.

3.4 Puzzles And Games

Any solution to the popular Sudoku puzzle is a Latin square, with the additional

restriction that nine particular adjacent subsquares must also contain the digits 1–9.

The similar Ken-Ken puzzles are also examples of Latin squares where the objective

is to fill the grid in with the digits 1 through 6 like a sudoku puzzle and each bold-

outlined group of cells should contain digits which achieve the specified result using

the specified mathematical operations. Latin squares have been used as the basis

for several board games, notably the popular abstract strategy game Kamisado.

Fig 7: Sudoku Fig 8: Ken-Ken Fig 9: Kamisado
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Delving Relationship Between Mathematics And Music

Akanksha Gupta

Abstract

Music is an alliance between arts and science and Mathematics plays a cen-

tral role in this alliance. This paper discusses the study of these two disciplines,

mainly focused on the mathematical part that exist in music through examples

from the compostion of French Composer, Olivier Messiean.

1. Fundamentals Of Music

This is the set of 12 keys of a piano keyboard which repeats

itself to form the entire keyboard. When you move from one

key to the just next key, say from F to F], it is called a semi-

tone. Two semitones form a whole tone, for example: from F

to G is a whole tone. ] and [ denote accidentals. ] is called

sharp i.e, higher in pitch by a semitone and [ is called flat

means lower in pitch by a semitone.

Table 1

Number of Music Interval Notes Ratio

Semitones Apart

1 Minor 2nd C-C] 16:15

2 Major 2nd C-D 9:8

3 Minor 3rd C- D] 6:5

4 Major 3rd C-E 5:4

5 Perfect 4th C-F 4:3

6 Augmented 4th/Diminished 5th C- F] 7:5

7 Perfect 5th C- G 3:2

8 Minor 6th C-G] 8:5

9 Major 6th C-A 5:3

10 Minor 7th C-A] 7:4

11 Major 7th C-B 15:8

12 Octave C-C 2:1

A musical interval is the difference between two pitches 1. The smallest differ-

ence is the semitone. In physical terms, it is the ratio of the frequency of two tones.

1how low or high a note sounds
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Scale is a set of notes in order of their pitch. If the pitch is becoming higher, it is

called an ascending scale. If the pitch is becoming lower, it is called a descending

scale.

2. Historical Connections Between Mathematics And Music

Pythagoras, besides being a mathematician, was also a music theorist. We owe him

for the discovery of the fundamental correspondence between musical intervals and

numerical ratios. Each musical interval is associated to the ratio of frequency of the

higher note to that of the lower-pitched note.

The most basic musical interval is the prime,where the fundamental2 note is

played in comparison to itself. The ratio of frequency is 1 : 1. The second most

basic interval, is the octave, where the fundamental relates to a second note that

has double the frequency of the fundamental.The ratio of the fundamental and the

second note is 1 : 2.

After the prime interval, the octave is the second most pleasant sounding interval.

The interval of fifth corresponds to the numerical ratio 3 : 2. Once Pythagoras

established the ratio of the octave and the fifth, he used these relationships and

simple mathematics to obtain further intervals.

Illustration 1: The Second(Major)

The interval C-G is the fifth, with C being the fundamental. When G is the

fundamental, the interval G-D is the fifth. By a factor of 3/2, D is higher than G

and G is higher than the original fundamental C. Thus, to compare the frequencies

of C and D, all that is required is multiplication.

∴ the frequency ratio of C-D

= (3 : 2)× (3 : 2)

= 9 : 4

D must now be transposed down one octave. Recall that the frequency ratio of

the note one octave below the fundamental and the fundamental itself is the ratio

1 : 2. Multiplying again gives the required ratio.

∴ the frequency ratio of C-D

(9 : 4)× (1 : 2)

= 9 : 8

⇒ any interval with the ratio (9 : 8) is a second(major).

Table 2

2root/ initial note
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Note C D E F G A B C

Freq. Ratio 1 9/8 32/27 4/3 3/2 27/16 16/9 2

Illustration 2: The Minor Second

The smallest difference between whole tones exists between the notes E-F and

B-C. The interval D-E is a second, so multiplying the frequency of E by 8 : 9 gives

the frequency of D. the interval D-F is a third, so multiplying the frequency of D

by 32 : 27 gives the frequency of F.

∴ the frequency ratio E-F

= (8 : 9)× (32/27)

= 256 : 243

The inversion of the interval B-D(a sixth) multiplied by the seventh D-C gives

the frequency ratio for B-C.

∴ the frequency ratio B-C

= (16 : 27)× (16 : 9)

= 256 : 243

In both of these cases, the resulting frequency ratio is 256 : 243, and is known

either as the semitone step, or the minor second.

The Pythagorean scale has many beautiful properties. Fourth and fifth, the

building blocks of all other intervals, are all pure intervals.This scale of one example

from Ancient Greece. Composition and creation of scales has differed but it has

been considered the building blocks of musical composition. Since the 18th century,

there has been general acceptance of the tempered3 scale. Each unit in a tempered

scale is a tempered semitone, with a value of 12
√

2

The eight intervals of the octave have frequency ratios:

1, f, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12

where f12 = 2(⇒ f = 12
√

2) The interval, in semitones, between any two tones of

the tempered scale is: 12× log2 (frequency ratio).

From Table 1, we find that most of the ratios of music intervals are of the form

(n+1)/n, where n is a positive integer. This arithmetic form is called superparticular

ratios. Following are few questions concerning superparticular ratios mathematically

as well as music oriented.

1. Can the square root of a superparticular ratio be superparticular? Or at least

be rational?
3Tempered Scale: divides an octave into twelve equal parts, e.g: piano keyboard(set of 12

keys).
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Musically related question is: Can we divide a consonant interval4 into two

equal consonant intervals?

2. Given a superparticular ratio, can we enumerate all the various ways of ex-

pressing it as a product of superparticular ratios? Is this number finite or

infinite? Is the number of possibilites finite if we fix a bound on the number

of factors?

This question is related to the question of diving a consonant interval into

certain number of consonant intervals and the problem of constructing scales

whose all intervals are consonant.

The response to Question 1 is known since antiquity. A proof of the fact that

there is no rational fraction whose square is equal to a superparticulr ratio. A

more general result is: for any pairs of integers B,C whose quotient is equal to a

superparticular ratio, there is no sequence of integers D,E, F, ...N between B and

C satisfying B/D = D/E = E/F = . . . = N/C.

In Boethius’ Musical Instituion III.5 d[4], the author mentions that in order to

circumvent the impossibility of dividing the tone (9/8) into two equal parts.

Regarding Question 2, we note that any superparticular ratio can be written as

a product of two or more, using the following:

p + 1

p
=

n(p + 1)

np
=

np + n

np + n− 1
× np + n− 1

np + n− 2
× np + n− 2

np + n− 3
× · · ·

In particular, above relation shows that every superparticular ratio can be written

as a product of superparticular ratios in an infinite number of ways. Aristides

Quintilianus, in Book III of his De Musica[5], used this method to describe the

division of the tone as 17/16×18/17 = 9/8, then the following division of semitones

and of quarter tones : 33/32× 34/33 = 17/16 and 35/34× 36/35 = 18/17

The concept of Golden Ratio also exists in music. The Golden Section is often

used to generate rhythmic change or to develop a melody line, and is found in

the musical timing of compositions. The climax of a song, for example, is often

found at the point of the golden ratio(approximately 61.8% of the way through a

composition). This is often also the place where significant changes in key or chord

structures are placed.

Note: In the next section there has been use of integers mod 12 for the twelve

notes of the octave.

4pleasant intervals
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3. Messiaen: The Mathematics of his Musical Language

Olivier Messiaen(1908-1992), a French composer and organist,

was a great contributor to contemporary music and thinking.

Even though he never considered himself as a mathematician,

he granted mathematics to prominent place, both in his com-

position and in his theortical teaching. He was fascinated

with time and rhythm and it is his contributions regarding

time and rhythm made his work so unique. He uses the term

”charm of impossibilites” to explain how in his musical language, ”certain mathe-

matical impossibilities, certain closed circuits, possesses a strength of bewitchment,

a charm”. His three principle innovations, Mode of Limited Transposition(MOLT),

non-retrogradable rhythm and symmetric permutations describe this power.

3.1. Modes of Limited Transposition

Mathematically, a mode5 of limited transposition6 is a sequence of distinct notes

that has a nontrivial group of symmetries by transpositions mod 12.

C C]/D[ D D ]/E[ E F F]/G[ G G]/A[ A A]/B[ B

0 1 2 3 4 5 6 7 8 9 10 11

Using the fact that one octave is made up of twelve semitones, and the number

twelve is divisible by various numbers, Messiean formed the modes by dividing the

octave into different recurring groups, each being a tiny transposition, each group

has an identical order of intervals, and the last pitch of one group serves as the first

pitch of the next.

The original form of each mode is called the first transposition, and always

begins on the note C. each transposition thereafter, begins on subsequent chromatic

steps. Each group within mode is constructed in the same way, so only a limited

transposition would result in new mode. Thus he created the term mode of limited

transposition.

• Mode 1- This is the sequence of notes C, D, E, F], G], B[. He means

this mode as being ”two times transposable” and by this means that the

corresponding pitch class(pc)-set7 is invariant by the translation x → x + 2.

5a sequence of distinct notes which describe the atmosphere(colour) of a musical composition
6writing music in a different key, mathematically, let Tn : Z12 → Z12 be such that Tn(x) = x+n

mod 12
7set of all pitches that are whole number of octaves apart. eg: pc set of ”C” - {Cn : n ∈ Z

}={. . . , C−1, C0, C1, . . . }
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The pc-set [0, 2, 4, 6, 8, 10] and it is the orbit8 of 0.This scale is called whole

tone scale because each degree increases by a tone. It corresponds to the

division of octave into six equal subintervals.

• Mode 2- This mode is ”three times transposable”, which means that, as a

subset of Z12, it is invariant under the translation x→ x+3. It is given by the

sequence of notes C, D[, E[, E], F], G, A, B[, which corresponds to the pc-set

[0, 1, 3, 4, 6, 7, 9, 10],i.e, union of the orbits of 0 and 1 by maps x → x + 3.

It consists of 4 groups of 2 consecutive elements in Z12.

• Mode 3- This mode is ”four times transposable”, and it is defines by the

sequence of notes C, D, E[, E], F], G, A[, B[, B]. In Z12, i.e, the sequence

of integers mod 12 [0, 2, 3, 4, 6, 7, 8, 10, 11], which is the union of the orbits

of 0, 2 and 3 by the map x → x + 4. The pc-set consists in 3 groups of 3

consecutive elements in Z12.

• Mode 4- This is the sequence C, D[, D], F, F], G, A[, B, which corresponds

to the pc-set [0, 1, 2, 5, 6, 7, 8, 11]. It is the union of the orbits of 0, 1, 2 and

5 by the map x→ x + 6.

• Mode 5-This is the sequence C, D[, F, F], G, B, which corresponds to the

pc-set [0, 1, 5, 6, 7, 11]. It is the union of the orbits of 0,1 and 5 by the map

x→ x + 6.

• Mode 6- This is the sequence of C, D, E, F, F], G], A], B which corresponds

to the pc-set [0, 2, 4, 5, 6, 8, 10, 11]. It is the union of the orbits of 0, 2, 4 and

5 by the map x→ x + 6.

• Mode 7- This is the sequence C, D[, D], E[, E], F], G, A[, A], B[, which

corresponds to the pc-set [0, 1, 2, 3, 4, 6, 7, 8, 9, 10], It is the union of the

orbits of 0,1,2,3 and 4 by the map x→ x + 6.

3.2. Non-retrogradable Rhythm

Messiean’s second creator of the ”charm of impossibilites” is non-retrogradable

rhythms. He discovered these rhthymic patterns in Indian and Greek rhythms.

The existence of a rhythmic palindrome, i.e, a special rhythmic form that is the

same whether it is read backwards or forwards. He thus named them as ”non-

retrogradable rhythm”.

8corresponds to modes which are at their first transposition
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For simple rhythms which have only three values such as 2, 1, 2, rhythmic

pattern holds if the outer two values are identical, and surround what he called a

”free central value”. Here 1 is free central value. When rhythm are more complex

and contain more than three values, he extended his principle: ”all rhythms divisible

into two groups, one of which is the retrograde of the other, with a common central

value, are non-retrogradable”. These rhythms are simple mathematical patterns,

yet he believed they held philosphic importance. According to him, strengths of

these patterns are:

1. Since patterns are pallindromic in nature, this creates an irreversibility of time,

whether time moves forward or backwards, the events are the same.

2. These rhythms have powerful link to our temporal life. The two outer groups

in his analogy are the past and the future. the middle, free central value is

the present. he claims that we cannot distinguish between past and future

without the freedom of the present. Hence, it is not possible to distingush

outer two groups without the central value in the rhythm.

3.3 Symmetrical Permutations

This is his third mathematical impossibilty. He calls, symmetrical permutations as

permuatations which have a small group of symmtries. To obtain such permutations,

one start at the center of the sequence of notes, and then takes successively one

note from the right and one note from the left, until one reaches the two ends of

the sequence, and of its iterates. For instance, this process transforms the sequence

1, 2, 3, into the sequence 2, 1, 3. Applying the same rule to 2, 1, 3, we obtain

1, 2, 3, which is the sequence we started with. Thus, the permutation 1, 2, 3 →
2,1,3 is of order of 2. Let us consider now a sequence of 4 notes. The iterates are:

1, 2, 3, 4→ 2, 3, 1, 4→ 3, 1, 2, 4→ 1, 2, 3, 4. This time order of permutation is 3.

4. The Music of Olivier Messiean

These three innovations gave his music a charm, a sense of bewitchment. Each

innovation formed a complete group, and a closed circuit which would always go back

to the beginning. They gave him way of describing his religious belief: with Catholic

faith, you will always return to the truth of eternity. He used the mathematical

techiniques of his musical language, to transcend the temporal limitations of music,

and express his faith.
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5. Conclusion

We found that relation between mathematics and music is immense. Many math-

ematicians throughout history have been interested in music and considered them-

selves as music theorist. On the other hand, Messiean never considered himself as

a mathematician but gave mathematics a prominent place in his compositions to

express his ideas and beliefs. Is further analysis needed? Mathematicians con-

tributed to the wealth of knowledge on music theory, often by writing books and

sharing their ideas. Messiean used his interest and knowledge for his composition.

Did the published and shared work of mathematicians influence musicians? To en-

hance the arguement extra research is needed. But indeed, numbers play a crucial

role in expressing colours of our feelings whether musicians know it or not.
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Mathematics in Solar Energy

Vanshika and Shubhra Aggarwal

Abstract

This paper aims to cover all the topics that are relevant for getting a broad

overview on the use of mathematics in Solar Energy, with a focus on the follow-

ing topics: Calculation of the Annual Solar Energy Output of a Photo Voltaic

System, Geometry, Shape, Positioning, Characterisation, Cost Effectiveness

and Area of Solar Panels along with an example.

1 Introduction

“How can it be that mathematics, being after all a product of human thought

which is independent of experience,

is so admirably appropriate to the objects of reality?”

-Albert Einstein

Solar energy works by capturing the energy of the sun and turning it into electricity

.Sun is a natural nuclear reactor. It releases tiny packets of energy called photons,

which travel the 93 million miles from the sun to Earth in about 8.5 minutes. Every

hour, enough photons impact our planet to generate enough solar energy to theo-

retically satisfy global energy needs for an entire year.

When photons hit a solar cell, they knock electrons loose from their atoms. If con-

ductors are attached to the positive and negative sides of a cell, it forms an electrical

circuit. When electrons flow through such a circuit, they generate electricity. Multi-

ple cells make up a solar panel, and multiple panels (modules) can be wired together

to form a solar array.

2 Shape of Solar Panels

Solar Panels can be found in every shape be it Rhombus, Parallelogram, Kite,

Square, Triangle etc.Researchers at Massachusetts Institute of Technology(MIT) re-

cently discovered that creating a 3D-inspired solar panel not only helps to keep up

with the trends, it could draw in 20 times more energy than flat panel designs.

Traditional solar panels lay flat on a surface or rooftop, facing the sun to collect

energy. MIT researchers decided to change the shape of solar panels, conducting

experiments with a cube, tall cube, and tower-shaped panels to see which design
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brought in more energy. Compared to flat panels, all three 3D panels created im-

pressive results and outproduced traditional panels, with the accordion-style tower

drawing in 20 times more power per square foot. The accordion-style arrays also

work better because they receive solar energy from all angles rather than in just one

direction.

Figure 1: 3d Solar Panel

The MIT study states that making these improvements can help power output be-

come “more predictable and uniform, which could make integration with the power

grid easier than with conventional systems.”

2.1 Geometry of Solar Panels

Researchers at Northwestern University have now developed a new design for or-

ganic solar cells that could lead to more efficient, less expensive solar power. Instead

of attempting to increase efficiency by altering the thickness of the solar cell’s poly-

mer layera tactic that has preciously garnered mixed resultsthe researchers sought

to design the geometric pattern of the scattering layer to maximize the amount of

time light remained trapped within the cell.

Using a mathematical search algorithm based on natural evolution, the researchers

pinpointed a specific geometrical pattern that is optimal for capturing and holding

light in thin-cell organic solar cells.

The resulting design exhibited a three-fold increase over the Yablonovitch Limit, a

thermodynamic limit developed in the 1980s that statistically describes how long a

photon can be trapped in a semiconductor.

In the newly designed organic solar cell, light first enters a 100-nanometer-thick

“scattering layer”, a geometrically-patterned dielectric layer designed to maximize

the amount of light transmitted into the cell. The light is then transmitted to the
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active layer, where it is converted into electricity.

“We wanted to determine the geometry for the scattering layer that would give us

optimal performance,” said Cheng Sun, assistant professor of mechanical engineer-

ing in Northwestern’s McCormick School of Engineering and Applied Science and

co-author of the paper.“But with so many possibilities, it’s difficult to know where

to start, so we looked to laws of natural selection to guide us.”[10]

The researchers employed a genetic algorithm, a search process that mimics the pro-

cess of natural evolution, explained Wei Chen, Wilson-Cook Professor in Engineering

Design and professor of mechanical engineering at McCormick and co-investigator

of the research.

“Due to the highly nonlinear and irregular behavior of the system, you must use

an intelligent approach to find the optimal solution,” said Cheng. “Our approach is

based on the biologically evolutionary process of survival of the fittest.”

The researchers began with dozens of random design elements, then “mated” and

analyzed their offspring to determine their particular light-trapping performance.

This process was carried out over more than 20 generations and also accounted for

evolutionary principles of crossover and genetic mutation.

The resulting pattern will be fabricated with partners at Argonne National Labo-

ratory.

2.2 Positioning of Solar Panels

To make the predictions about the best way to fix solar panels where you live,use

Google earth or maps.Find your house and then zoom in.

Figure 2

Make a quick sketch of the orientation of your house and then suggest which part

of the roof would be best to put the panels on.

To decide which part of the roof,angle of inclination helps. Angle of inclination can

62



be 0◦,10◦,20◦,30◦and so on. The best angle can be in between any of the above two

angles as well.

Consider the following steps to get an idea about the positioning of the solar panel:

• Place the Bearing alignment circle on top of a book or a folder so that it rests

horizontally.

• Place the compass on top of the alignment Circle.

• Turn the alignment circle until north on the paper is the same as the needle

on the compass.

Figure 3

• Now take the compass away and place the ruler in the middle of the circle

standing on one end.

• Turn the ruler abouty its vertical axis until the edges of the shadow are at

right angles to the ruler.Through this the bearing of the sun is lined up and

it can be read by looking at the angle value directly opposite the shadow.

• Now the solar cell is ready to be lined up with the sun.

• Connect the solar panel with the multimeter as can be seen in the photo-

graph.Connect the multimeter to one cell only.

• Take your solar panel,ruler and alignment circle and set them as in the dia-

gram.
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Figure 4

• Lean the solar panel against the ruler and change the angle until the voltage

reaches a maximum.Note the value on the multimeter.The angle which has

been found out is called the pitch angle.

• Calculating Pitch Angle- Measure the height of the solar cell from the ruler.Remember

to allow for the bottom part of the ruler where there are no markings.

• Measure the horizontal distance from the base of the ruler to the solar cell.

• Now we use trigonometry to calculate the Pitch angle. See the diagram to

calculate the pitch angle.

Figure 5

• The angle of elevation of sun = 90◦-pitch angle.

Circuit Setup:

The solar panel should be connected to the multimeter as shown in Figure 6. Start

with the dial on the multimeter in the ‘OFF’ position. The black plug connects the
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central COMM socket on the multimeter to the black(negative) socket on any one

of the four cells (labelled 1 to 4). In this picture, it is connected to cell number 1.

The red plug connects the right-hand socket on the multimeter to the red (positive)

socket of the same cell.

Figure 6

Global solar radiation on a tilted surface IT consists of daily direct solar radiation Ib
, diffuse solar radiation Id , and ground reflected radiation Ir. Daily solar radiation

on a tilted surface for a given month can be estimated as follows:

IT = Ib + Id + Ir

The daily direct radiation on a tilted surface Ib can be obtained by means of Rb , the

ratio of the average daily direct radiation on a tilted plane to that on a horizontal

plane and the parameters to it correlated:

Ib =
cos θ

cos θz
= HbRb,

Rb = cosβ

− sinβ(sin δ cosφ cos γ

− cos δ sinφ cosω cos γ − cos δ sin γ sinω)

(sin δ sinφ+ cos δ cosφ cosω)−1,

where β is the slope of the panel as to the horizontal plane,γ is the azimuth, δ is the

solar declination, ω is the solar hour angle, φ is the latitude, and θ and θz are the

solar incidence angle on the considered plane and the solar zenith angle, respectively.

If we consider a uniform and isotropic distribution of diffuse solar radiation over the

sky hemisphere, Id would be easily obtained from the simple approximation:

Id(iso) = Hd(1+cosβ)
2
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where Hd is the horizontal sky diffuse irradiation.

The evaluation of the ground-reflected diffuse radiation depends on Ir. Most studies

consider that the ground reflection process is ideally isotropic, in which a specific

case Ir can be simplified as follows:

Ir =
Hgρ(1−cosβ)

2

where ρ represents the diffuse reflectance of the ground (also called ground albedo)

and Hg is the horizontal global solar irradiation.

Finally, the daily global solar irradiation on slopes IT can be expressed as the sum

of Ib,Ir and Id(iso).

3 Energy produced by Solar Panel

The total amount of energy they produce during the day is governed by things like

solar latitude which is associated with latitude and season, and atmospheric condi-

tions such as cloud coverage, temperature and degree of pollution apart from panel

orientation and shading. In India, ideal orientation for solar panels is slight tilt

towards true south.

Power under the curve:

Figure 7

Solar panels often include measuring devices which record the amount of power that

is being generated every few minutes.

For constant power, if we plot the power (kW) on the vertical axis and the time

(hours) on the horizontal axis, then the energy can be interpreted as the area under

the curve :
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Energy = power ∗ time

= height(kW) ∗ width(hrs)

= area under the power curve in units of kWh.

Even when the power curve is not constant, the energy produced can still be in-

terpreted as the area under the curve. To find the energy generated by the solar

panels, area can be approximated using geometric shapes such as rectangles and

triangles As the number of rectangles becomes larger (i.e. goes to infinity) and their

width goes to zero, the area under the rectangles approaches the area under the

curve. This limiting process is the base for the definition of the integral as the limit

of Riemann sums.

3.1 Space required to install 1kW Solar Panels

Under clear skies and good sunshine, each square meter is receiving about 1000

watts of solar energy. At typical 15 % panel efficiency, a 1 sq m area will generate

150 watts of power. For 1 kW power output, about 7 sq m area will be required.

After leaving some free space, about 10-12 sq m clear roof area will be required.

4 Calculation of the Annual Solar Energy Output of a

Photo Voltaic System

The global formula to estimate the electricity generated in output of a photo voltaic

system is :

E = A * r * H * PR

where,
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E = Energy(kWh)

A = Total solar panel Area (m2)

r = solar panel yield(%)

H = Annual average solar radiation on tilted panels

PR = Performance ratio, coefficient for losses

(range between 0.5 and 0.9, default value = 0.75)

5 Area of Solar Panels

Solar panels are usually installed at an angle to the earth’s surface. A solar panel

has a conversion efficiency of 100 percent,i.e, it converts all the solar energy into

electrical energy.

Area of solar panels depends on its efficiency.Higher the efficiency,lower is the area

required.

Example:

Suppose that 20 solar panels rated at 100 watts each and having a conversion effi-

ciency of 18 percent need to be installed.

The total power output of the solar system can be calculated as :

Total Power Output = Total Area*Solar Irradiance*Conversion Efficiency

Required Total Output Power = 20 panels*100 watts =2000 watts

The solar irradiance for a surface perpendicular to the Sun’s rays at sea level on a

clear day is about 1000 watt/m2

Also the conversion efficiency is 18 percent.

Putting these values we get: 2000 watts = Total area*(1000 watt/m2) ∗ 0.18 which

implies that total area = 11.11m2.

6 Characterization of Solar Panels

Solar panels are characterized by number of watts (Wp) they can produce under

Standard Test Conditions (STC) of 1000W/m2 irradiation, cell temperature of 25
◦ Celsius and air mass of 1.5. This is their peak performance. . The number

1.5 has been agreed upon for the STC (Standard Test Condition) for testing solar
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panels. Air mass is a measure of the distance traveled by sunlight through the

Earths atmosphere.

7 Cost Effectiveness

To determine whether installing solar panels are worth it might require knowing the

cost to buy and install the solar panels, the cost for upkeep (minimal) , the price

of electricity in the region and the reduced carbon footprint that would arise from

using solar panels. The reduction in greenhouse gas output could be of benefit to

the environment and society. Solar technology is improving and the cost of going

solar is dropping rapidly, so our ability to harness the suns abundance of energy is

on the rise.

Figure 8

It can be seen that there is a negative correlation between the prices and installa-

tions.

8 Conclusion

Unglazed transpired collectors or UTC (also known as perforated collectors) are

a relatively new development in solar collector technology, introduced in the early

nineties for ventilation air heating. These collectors are used in several large build-

ings in Canada, USA and Europe, effecting considerable savings in energy and heat-

ing costs.

A 2017 report from the International Energy Agency shows that solar has become

the worlds fastest-growing source of power marking the first time that solar ener-

gys growth has surpassed that of all other fuels. In the coming years, we will all be

enjoying the benefits of solar-generated electricity in one way or another.
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