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PREFACE

This edition of Éclat, 2014 - 2015 has been a remarkable journey taking us
through twelve brilliant papers with incessant rounds of editing to bring out the
final version. It has been a great challenge to give a platform to this journal
which was only an idea a few years ago. With this copy of Eclat, we aim to
provide readers with an in-depth knowledge into various topics of mathematics.
It has been a pleasure to put together research and insights into black and white.

The following compilation contains four categories of mathematics namely,
History of mathematics, Rigour in mathematics, Inter disciplinary aspects of
mathematics and Extension of course content.We have hoped to furnish all
varities of readers with suitable content in each field. This journal will not just
help you grow in your mathematical understanding but also takes you down to
a thought process of coming up with your own ideas.

The entire department of Mathematics of our college has been instrumental
in the publication of this journal.We sincerely thank the faculty of the Depart-
ment of Mathematics, Lady Shri Ram College For Women, for guiding and
supporting us throughout the year. We welcome corrections, suggestions and
submissions from our readers.

We dedicate this volume of the journal to Ms. Maryam Mirzakhani, the first
woman to win the Fields medal, one of the highest honours in Mathematics. The
award recognizes her sophisticated and monumental contributions to the fields
of geometry and dynamical systems, particularly in understanding the symme-
try of curved surfaces. She is an inspiration to all female mathematicians.
Happy Exploring!

The Editorial Team

Yashaswika Gaur, B.Sc. (Hons.) Mathematics, 3rd Year
Jasmine Bhullar, B.Sc. (Hons.) Mathematics, 3rd Year
Rajenki Das, B.Sc. (Hons.) Mathematics, 2nd year
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 History of Mathematics 
 

 
Mathematics is the one of the oldest academic discipline involving stimulating and 

intriguing concepts. It is far beyond the ken of one individual and to make any 
contribution to the evolution of ideas, an understanding of the motivation behind the 
ideas is needed. The section covers the genesis of mathematical ideas, the stream of 

thought that created the problem and what led to its solution. The aim is to acquaint the 
readers with historically important mathematical vignettes and make them inured in 

some important ideas of Mathematics. 





LEONHARD EULER

RABIKA GURUNG AND SHIREEN PRAKASH

Abstract. A significant figure in the history of Mathematics, Euler’s momentous con-

tributions to varied fields of mathematics like analysis and group theory account for

almost one third of the total mathematical works done during his lifetime. It is a virtu-

ally impossible task to do justice, in a short span of time and space, to the great genius

of Leonhard Euler.

Personal life

Leonhard Euler was born in Basel, Switzerland on April 15, 1707 to Paul Euler and Mar-

guerite Brucker. Euler studied theology and Hebrew in the University of Basel. He took

the freshman courses on elementary mathematics given by Johann Bernoulli. Euler pursued

his mathematical studies with such zeal that he soon caught the attention of Bernoulli,

who encouraged him to study more advanced books on his own and even offered him as-

sistance at his house every Saturday afternoon. These personal meetings, which have also

been mentioned by Euler in his autobiography of 1767, have become famously known as

the privatissima, and they continued well beyond his graduation. Euler recounts this early

learning experience at the university in his brief autobiography of 1767:

“In 1720, I was admitted to the university as a public student, where I soon found the

opportunity to become acquainted with the famous professor Johann Bernoulli, who made it

a special pleasure for himself to help me along in the mathematical sciences. Private lessons,

however, he categorically ruled out because of his busy schedule. However, he gave me a far

more beneficial advice, which consisted in myself getting a hold of some of the more difficult

mathematical books and working through them with great diligence, and should I encounter

some objections or difficulties, he offered me free access to him every Saturday afternoon,

and he was gracious enough to comment on the collected difficulties, which was done with

such a desired advantage that, when he resolved one of my objections, ten others at once

disappeared, which certainly is the best method of making happy progress in the mathematical

sciences.”

In 1723, Euler graduated with a master’s degree and delivered a public lecture (in Latin)

comparing Descartes’ system of natural philosophy with that of Newton. Euler’s years at

the Academy of St. Petersburg from 1727 to 1741 proved to be a period of extraordinary

productivity and creativity. In 1733, Danielle Bernoulli returned to free Switzerland and

hence Euler, at the early age of 26, stepped into the leading mathematical position in the
1
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Academy. At St. Petersburg he married Catharina Gsell. Euler was very fond of children

and had 13 of his own (out of which 5 died very young). Euler stayed in Russia till 1740

and after that settled in Berlin for the next 24 years of his life. Euler’s eyesight worsened

throughout his mathematical career. Three years after suffering a near-fatal fever in 1735,

he became almost blind in his right eye. He later developed a cataract in his left eye, which

rendered him almost totally blind. However, this had little effect on his work owing to his

excellent mathematical skills and razor sharp memory. Euler’s productivity in many areas

of study actually increased. He produced, on an average, one mathematical paper every

week in the year 1775. In St. Petersburg on 18 September 1783, after a lunch with his

family, Euler suffered a brain haemorrhage. He died a few hours later.

Major works

• Euler’s first independent work was done at the age of 19. He wrote paper on the

masting of ships, proposed by the Paris Academy of Scieces. Though Euler failed

to win the first prize, but he received an honourable mention and later he recouped

the loss by winning the prize 12 times. Euler moved to St. Petersburg and then to

Berlin. Moving to these two places gave a direction to his mathematical journey. In

1727, Euler received a call from St. Petersburg for the post of an associate of the

medical section but owing to certain circumstances he ultimately joined where he

belonged, that is the mathematical section.

• One of the most important works of this period was the treatise of 1736 on mechan-

ics. His treatise for mechanics is equivalent to Descartes’ work in geometry.

• In spite of the serious setbacks in health during his stay at St. Petersburg from 1727

to 1741, Euler astonishingly produced major works on mechanics, music theory, and

naval architecture which are interspersed with some 70 memoirs on a great variety

of topics that run from analysis and number theory to concrete problems in physics,

mechanics, and astronomy.

• Euler left St. Petersburg on 19 June 1741 to take up a post at the Berlin Academy.

In Berlin, he published the two works for which he would become most renowned:

The Introductio in analysin infinitorum, a text on functions published in 1748,

and the Institutiones calculi differentialis, published in 1755 on differential cal-

culus. Due to his unpopularity in Frederick’s court and his anger, Euler at the age

of 59 again accepted the invitation of Catherine the Great to St. Petersburg. After

Euler moved to St. Petersburg for the second time, his left eye also started worsen-

ing due to cataract. But he did not resign himself to darkness and silence. Before

the last light faded, he accustomed himself to writing his formulae with a chalk on

a large slate.The loss of his eyesight indeed sharpened his perceptions in the inner

world of his imagination. One of the most remarkable features about Euler was his

brilliant genius in both of the main currents or fields of mathematics.
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Contributions

-

• Mathematical Notation- Among his diverse works, the most notable was the in-

troduction of the concept of functions. Euler also pioneered the use of ‘f(x)’ to

signify the function f applied to the argument x. He also defined the contemporary

notation for the trigonometric functions, the letter ‘e’, for the base of the natural

logarithm ( Euler’s number), the Greek letter ‘
∑

’ for summations and the letter

‘i’ to signify the imaginary unit.

• Analysis- Euler defined the use of the exponential functions and logarithms in ana-

lytic proofs. He discovered ways to state various logarithmic functions using power

series, and he effectively defined logarithms for negatives and complex numbers.

Through these accomplishments, he enlarged the scope of mathematical applica-

tions of logarithms to a great extent. Euler also explained in detail the theory of

higher transcendental functions by inventing the gamma function and introduced

a novel approach for solving quartic equations. He also discovered a technique to

calculate integrals with complex limits, aiding the development of modern com-

plex analysis and invented the calculus of variations along with the Euler Lagrange

equation.

• Number Theory- Euler proved Fermat’s little theorem, Newton’s identities, Fermat’s

theorem on sums of two squares and he also distinctively contributed to Lagrange’s

four-square theorem. He significantly added value to the theory of perfect numbers,

which had always been a captivating topic for several mathematicians.

• Physics and Astronomy- Euler made a noteworthy contribution in explaining the

Euler Bernoulli beam equation, which became the foundation of engineering. He

was awarded with numerous Paris Academy Prizes for his contributions in the field

of astronomy. He found out the orbits of comets and other celestial bodies with

exactness, understanding the nature of comets and calculating the parallax of the

sun. This helped in preparing precise longitude tables.

Conclusion

Versatile mathematician Leonhard Euler made significant discoveries in varied fields

which have been discussed above. All his collections, if printed, would occupy 60-80 quarto

volumes reflecting his outstanding mathematical abilities. Euler is the only mathemati-

cian to have two numbers named after him: the important Euler’s Number in calculus (e),

approximately equal to 2.71828, and the Euler-Mascheroni Constant (gamma) also called

“Euler’s constant” approximately equal to 0.57721. He has been criticized, sometimes justly,

for letting his mathematics run away with his sense of reality and that uncontrollable impulse

to calculate merely for the sake of the beautiful analysis.
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GEORGE FRIEDRICH BERNHARD RIEMANN

SRISHTI BHOGAL AND SHIKHA KALIA

Abstract. Sir George Friedrich Bernhard Riemann was an influential German math-

ematician who made lasting contributions to analysis, number theory, and differential

geometry. He is the only one who established a geometric foundation for Complex Anal-

ysis through Riemann Surfaces through which multi-valued functions like the complex

logarithm or the square root could become one-to-one functions.

Introduction

Bernhard Riemann circa 1863

George Friedrich Bernhard Riemann was born in Breselenz, a village near Dannenberg

in the Kingdom of Hanover (in what is the Federal Republic of Germany today), on 7

September 1826. His father, Friedrich Bernhard Riemann, was a poor Lutheran pastor in

Breselenz who fought in the Napoleonic Wars and his mother, Charlotte Ebell, died when

he was just a child. Riemann was the second of six children; under-confident as a child with

a fear of public speaking and susceptible to nervous breakdowns. On the other hand, he

was a gifted mathematician with exceptional calculation aptitude. He was married to Elise

Koch in 1862 and they had one daughter.

Early Life and Education

In 1840 Bernhard Riemann went to middle school in Hanover (now Germany) and later

attended high school at the Johanneum Lunerberg. In high school, Riemann studied the
5
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Bible intensively, but he was often distracted by Mathematics. His teachers were amazed

by his adept ability to perform complicated mathematical operations. In 1846, at the age of

20, he started studying Philosophy and Theology in order to become a pastor and help with

his family’s finances. During the spring of 1846,after gathering enough money, his father

sent Riemann to the renowned University of Göttingen where he planned to study Theology

but his focus soon shifted to Mathematics. Once there, he started studying Mathematics

under Carl Friedrich Gauss (specifically his lectures on the method of least squares) who

encouraged him to talk to his parents and switch to a degree in Mathematics. Riemann

transferred to the University of Berlin in 1847 and remained there for the next two years.

He returned to Göttingen in 1849.

Riemann became a lecturer on the recommendation of his teacher Gauss at the University

of Göttingen, where he held his first lectures in 1854. In 1857, seeing the brilliance of

Riemann, efforts were made to promote him to a position of an extraordinary Professor but

this attempt failed and he was paid like any other professor in the University of Göttingen.

In 1859, following Dirichlet’s death, he was promoted to head the Mathematics Department

at Göttingen.

Contributions to the Field of Mathematics

Bernhard Riemann had the touch of gold. Everything he worked with, he revolutionized.

Riemann was a pure genius and his phenomenal contributions to the Mathematical world

are a proof of his creativity and depth of knowledge. Despite his ailing health, he was one of

the greatest mathematicians of all time. He had an extraordinary command over complex

analysis which he interconnected with topology and number theory. Other revolutionary

contributions include the tensor analysis, theory of functions, differential geometry and the

most notable being the theory of manifolds. He pursued general actuality proofs, rather

than constructive proofs that actually produce the objects. He said that this method led

to theoretical clarity, making it easy for the mathematician and avoided getting confused

with too much detail. The base of Einstein’s Theory of Relativity was set up in 1854 when

Riemann gave his first lecture.

Riemann Geometry

In 1854, Riemann presented his thoughts on geometry, for the post-doctoral qualification,

to faculty member Gauss at Göttingen. Gauss was highly impressed with his ideas. Riemann

argued that fundamental ingredients of geometry include space of points and it involves

measuring distances along lines or curves in that space.

Riemann’s idea was to introduce a collection of numbers at every point in space (i.e.,

a tensor) which would describe how much it was bent or curved. Riemann found that in

four spatial dimensions, one needs a collection of ten numbers at each point to describe the

properties of a manifold, no matter how distorted it is. This is the famous construction

central to his geometry, known now as a Riemannian metric.

As per Riemann, the space does not need to be simple Euclidean space, but it could

have many dimensions, even infinite dimensions. He also argued that it is not necessary
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that a surface be drawn completely in three-dimensional space. His work inspired Eugenio

Beltrami, an Italian mathematician, to produce a description of non-Euclidean geometry.

Albert Einsteins theory of relativity was based on Riemann’s notions of geometry of space.

Complex Analysis

His contributions to this area are numerous. In his dissertation, he established a geometric

foundation for complex analysis through Riemann surfaces, through which multi-valued

functions like the logarithm (with infinitely many sheets) or the square root (with two sheets)

could become one-to-one functions. Complex functions are harmonic functions (that is, they

satisfy Laplace’s equation and thus the Cauchy-Riemann equations) on these surfaces and

are described by the location of their singularities and the topology of the surfaces. The

topological “genus” of the Riemann surfaces is given by g = w/2−n+ 1 , where the surface

has leaves coming together at branch points. For g > 1 the Riemann surface has (3g − 3)

parameters (the “moduli”).

The famous Riemann mapping theorem says that a simply connected domain in the com-

plex plane is “biholomorphically equivalent” (i.e. there is a bijection between them that is

holomorphic with a holomorphic inverse) to either the exterior or to the interior of the unit

circle. The generalization of the theorem to Riemann surfaces is the famous Uniformization

Theorem, which was proved in the 19th century by Henri Poincaré and Felix Klein. Here,

too, rigorous proofs were first given after the development of richer mathematical tools (in

this case, topology). For the proof of the existence of functions on Riemann surfaces, he

used a minimality condition, which he called the Dirichlet principle.

Weierstrass found a hole in the proof: Riemann had not noticed that his working assump-

tion (that the minimum existed) might not work; the function space might not be complete,

and therefore the existence of a minimum was not guaranteed. Through the work of David

Hilbert in the Calculus of Variations, the Dirichlet principle was finally established. Oth-

erwise, Weierstrass was very impressed with Riemann, especially with his theory of abelian

functions. When Riemann’s work appeared, Weierstrass withdrew his paper from Crelle

and didn’t publish it.

An anecdote from Arnold Sommerfeld shows the difficulties which contemporary mathemati-

cians had with Riemann’s new ideas. In 1870, Weierstrass had taken Riemann’s dissertation

with him on a holiday to Rigi and complained that it was hard to understand. The physicist

Hermann von Helmholtz assisted him in the work overnight and returned with the comment

that it was “natural” and “very understandable”.

Other highlights include his work on abelian functions and theta functions on Riemann sur-

faces. Riemann had been in a competition with Weierstrass since 1857 to solve the Jacobian

inverse problems for abelian integrals, a generalization of elliptic integrals. Riemann used

theta functions in several variables and reduced the problem to the determination of the

zeros of these theta functions. Riemann also investigated period matrices and characterized

them through the “Riemannian period relations” (symmetric, real part negative).

Many mathematicians, such as Alfred Clebsch, furthered Riemann’s work on algebraic
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curves. These theories depended on the properties of a function defined on Riemann sur-

faces.

Real Analysis

In the field of real analysis, he discovered the Riemann integral in his habilitation.

Among other things, he showed that every piecewise continuous function is integrable. In

his habilitation work on Fourier series, where he followed the work of his teacher Dirichlet, he

showed that Riemann-integrable functions are “representable” by Fourier series. Riemann

gave an example of a Fourier series representing a continuous, almost nowhere-differentiable

function, a case not covered by Dirichlet. He also proved the Riemann-Lebesgue lemma:

if a function is representable by a Fourier series, then the Fourier coefficients go to zero for

large n.

Number Theory

He made some famous contributions to modern analytic number theory. In a single short

paper, the only one he published on the subject of number theory, he investigated the

zeta function that now bears his name, establishing its importance for understanding the

distribution of prime numbers. The Riemann hypothesis was one of a series of conjectures

he made about the function’s properties.

Publications

Some of his famous writings (which were published after his death) include ‘On the

Hypothesis Which Lie at the Foundation of Geometry’ in 1868, ‘Collected Works of Bernhard

Riemann’ published in 1892, and Collected Papers’ published in 2004.

Death

It is said that Riemann caught a cold which worsened to become tuberculosis. Although

he made several efforts in order to get better but all in vain. He spent the final days of his

life in Italy in the village of Selasca with his wife and daughter. Riemann died on 20th July

1866.
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ZERO

RAJENKI DAS, DEEPIKA SAINI

Abstract. Zero may not be part of the countable numbers family and also, may not

have any value on its own but it does increase the value of any countable digit by TEN

TIMES. Nevertheless, it has a really interesting history. Zero is not just represented by

empty space, it is lot more meaningful than we presume. We may think that zero was

the first number to be discovered but you may be surprised to know that it is not true.

The history of mathematics is very unclear about the origin of zero. Nobody can, yet,

clearly answer who discovered zero. Was it Aryabhatta? The paper explores this and

also talks about the different types of zero.

Etymology

The word zero came into the English language via French zèro from Venetian zero, via ze-

firo from safira or sifr. In pre-Islamic time the word sifr (Arabic) had the meaning ‘empty’.

Sifr evolved to mean zero when it was used to translate s̀ũnya (Sanskrit). The first known

use of zero in the English language was in 1598.

The Italian mathematician Fibonacci, who is credited with introducing the decimal sys-

tem to Europe, used the term zephyrum. This became zefiro in Italian, and was then

contracted to zero in Venetian. The Italian word zefiro was already in existence (meaning

“west wind” from Latin and Greek zephyrus) and may have influenced the spelling when

transcribing Arabic sifr.

History

Zero was invented independently by the Babylonians, Mayans and Indians (although

some researchers say that the Indian number system was influenced by the Babylonians).

• Babylonians:

Despite the invention of zero as a placeholder, the Babylonians never quite discov-

ered zero as a number. The Babylonians wrote on tablets of unbaked clay, using

cuneiform writing. The symbols were pressed into soft clay tablets with the slanted

edge of a stylus and so had a wedge-shaped appearance. Many tablets from around

1700 BC survive and we can read the original texts. Of course their notation for

numbers was quite different from ours (and not based on 10 but on 60) but to

translate into our notation they would not distinguish between 2106 and 216 (the

context would have to show which was intended). It was not until around 400 BC

that the Babylonians put two wedge symbols into the place where we would put
9
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zero to indicate which was meant, 216 or 21 ” 6.

• Mayans:

The Mayans, native inhabitants of Central America, were highly skilled mathemati-

cians, astronomers, artists and architects. They had a very complex calendar system

and needed a placeholder in their elaborate date system. This led to their invention

of zero.

• Indians:

Zero was used to denote an empty place.A striking note about the Hindu zero is

that, unlike the Babylonian and Mayan zero, the Hindu zero symbol came to be

understood as meaning “nothing”. This is probably because of the use of number

words that preceded the symbolic zero.

Until 1930, many scholars in the West believed that the zero was either a European

or an Arab invention. A highly polemical academic argument was raging at the

time, where British scholars, among them G. R. Kaye, who published much about

it, mounted strong attacks against the hypothesis that the zero was an Indian inven-

tion. The oldest known zero at that time was indeed in India, at the Chatur-bujha

temple in the city of Gwalior. But it was dated to the mid-ninth century, an era

that coincided with the Arab Caliphate. Thus Kaye’s claim that zero was invented

in the West and came to India through Arab traders could not be defeated using

the Gwalior zero. But then in 1931, the French archaeologist Georges Cœdès pub-

lished an article that demolished Kaye’s theory. In it, he proved definitively that

the zero was an Eastern (and perhaps Cambodian, although he viewed Cambodia

an “Indianized” civilization) invention. Cœdès based his argument on an amazing

discovery. Early in the twentieth century, an inscription was discovered on a stone

slab in the ruins of a seventh-century temple in a place called Sambor on Mekong,

in Cambodia. Cœdès gave this inscription the identifier K-127. He was an expert

philologist and translated the inscription from Old Khmer. It begins: “Chaka pari-

graha 605 pankami roc...” which translates to: “The Chaka era has reached 605 on

the fifth day of the waning moon...”

The zero in the number 605 is the earliest zero we have ever found. We know that

the Chaka era began in AD 78, so the year of this inscription in our calendar is

605 + 78 = AD 683. Since this time predates the Arab empire, as well as the

Gwalior zero, by two centuries, Cœdès was able to prove that the zero is, in fact,

an Eastern invention. It is believed to have come to the West via Arab traders and

was popularized in Europe through the work of Fibonacci (of the famous sequence

of numbers), published in 1202. In 498 AD, Indian mathematician and astronomer

Aryabhata stated that “sthãnãt sthãnaṁ das̀agunaṁ syãt” i.e., “from place to place

each is ten times the preceding” which is the origin of the modern decimal-based

place value notation. In around 500 AD, Aryabhata devised a number system which

has no zero, yet was a positional system. He used the word “kha” for position and
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it would be used later as the name for zero. There is evidence that a dot had been

used in earlier Indian manuscripts to denote an empty place in positional notation.

It is interesting that the same documents sometimes also used a dot to denote an

unknown where we might use ‘x’. Later Indian mathematicians had names for zero

in positional numbers, yet had no symbol for it. The first record of the Indian use

of zero which is dated and agreed by all to be genuine was written in 876 AD.

Brahmagupta established the basic mathematical rules for dealing with zero (1

+ 0 = 1; 1 - 0 = 1; and 1 x 0 = 0), although his understanding of division by

zero was incomplete (he thought that 1 ÷ 0 = 0). Almost 500 years later, in the

12th Century, another Indian mathematician, Bhaskara II, showed that the answer

should be infinity, not zero (on the grounds that 1 can be divided into an infinite

number of pieces of size zero); an answer that was considered correct for centuries.

However, this logic does not explain why 2 ÷ 0, 7 ÷ 0, etc. should also be zero.

The modern view is that a number divided by zero is actually “undefined” (i.e.

it doesn’t make sense). Brahmagupta gave the first rules for dealing with zero

as a number: When zero is added to a number or subtracted from a number, the

number remains unchanged; and a number multiplied by zero becomes zero. He also

gave arithmetical rules in terms of fortunes (positive numbers) and debts (negative

numbers):

– A debt minus zero is a debt.

– A fortune minus zero is a fortune.

– Zero minus zero is a zero.

– A debt subtracted from zero is a fortune.

– A fortune subtracted from zero is a debt.

– The product of zero multiplied by a debt or fortune is zero.

– The product of zero multiplied by zero is zero.

– The product or quotient of two fortunes is one fortune.

– The product or quotient of two debts is one fortune.

– The product or quotient of a debt and a fortune is a debt.

– The product or quotient of a fortune and a debt is a debt.

Brahmagupta then tried to extend arithmetic to include division by zero:-

– Positive or negative numbers when divided by zero is a fraction with the zero

as denominator.

– Zero divided by negative or positive numbers is either zero or is expressed as a

fraction with zero as numerator and the finite quantity as denominator.

– Zero divided by zero is zero.

Types of zero

It is necessary to distinguish three different types of “zero” : the “intuitive zero”, that

means “nothing”, the “numeral zero” used in the representation of the numbers and the

“mathematical zero” defined by the modern mathematicians.
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Conclusion

Though zero was found independently in three distinct regions, Indians are considered to

be the first ones to invent zero.
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Rigour in Mathematics 
 

 
This section introduces advance Mathematics to the readers aiming at high standards 
of proofs. It stimulates interest and lays the foundation for further studies in different 

branches. 





NORMAL CATEGORIES FROM VECTOR SPACES

AZEEF MUHAMMED P A

Abstract. Let TV be the multiplicative semigroup of all singular linear transforma-

tions on an arbitrary vector-space V . It is known that TV is a regular semigroup. The

principal left ideals of a regular semigroup with partial right translations as morphisms

form a category L(S). The category L(S) is known as the normal category associated

with the semigroup S. Every normal category C gives rise to a regular semigroup TC
of normal cones in C. We show that the semigroup TL(TV ) of normal cones in L(TV )

is isomorphic to TV . The Subspace category P(V ) associated with V is the category

whose objects are proper subspaces of V and morphisms are linear transformations. We

show that L(TV ) is isomorphic to the category P(V ).

Keywords : Normal Category, Linear-transformations, Subspace, Cross-connections,

Normal Cones.
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Introduction

A semigroup is an abstract algebraic structure consisting of a non-empty set S along

with an associative binary operation. A semigroup S is said to be (von-neumann) regular

if for every a ∈ S, there exists b such that aba = a. In the study of the structure theory

of regular semigroups, there are mainly two approaches. The first approach inspired by the

work of WD Munn (cf. [7]) uses the set of idempotents E of the semigroup to construct the

semigroup as a full-subsemigroup of the semigroup of the principal-ideal isomorphisms of E.

One of the biggest contributions of India to the world of semigroup theory lies at the heart

of this construction wherein KSS Nambooripad (cf. [8]) abstractly characterized the set of

idempotents of a (regular) semigroup as a (regular) biordered set. It was later proved by D

Easdown (cf. [2])that infact the idempotents of any arbitrary semigroup form a biordered

set.

The second approach initiated by Hall (cf. [4]) uses the ideal structure of the regular

semigroup to analyse its structure. PA Grillet (cf. [3]) refined Hall’s theory to abstractly

characterize the ideals as regular partially ordered sets and constructing the fundamental

image of the regular semigroup as a cross-connection semigroup. Again Nambooripad (cf.

[9]) generalized the idea to any arbitrary regular semigroups by characterizing the ideals as

normal categories.

A cross-connection between two normal categories C and D is a local isomorphism Γ : D →
N∗C where N∗C is the normal dual of the category C. A cross-conection Γ determines a

cross-connection semigroup S̃Γ and conversely every regular semigroup is isomorphic to a

cross-connection semigroup for a suitable cross-connection.
13



14 AZEEF MUHAMMED P A

Let TV be the multiplicative semigroup of all singular linear transformations on an arbitrary

vector-space V under composition. It is known that TV is a regular semigroup. The principal

left ideals of a regular semigroup with partial right translations as morphisms form a category

L(S). The category L(S) is known as the normal category associated with the semigroup

S. Every normal category C gives rise to a regular semigroup TC of normal cones in C. In

this paper, we show that the semigroup TL(TV ) of normal cones in L(TV ) is isomorphic

to TV . The Subspace category P(V ) associated with V is the category whose objects are

proper subspaces of V and morphisms are linear transformations. We also show that L(TV )

is isomorphic to the category P(V ).

Preliminaries

We assume familiarity with the definitions and elementary concepts of category theory

(cf. [6]). In the following, the definitions and results on normal categories are as in [9]. For

a category C, we denote by vC the set of objects of C.
Definition 0.1. A preorder P is a category such that for any p, p′ ∈ P, the hom-set P(p, p′)
contains atmost one morphism.

In this case the relation ⊆ on the class vP of objects of P defined by

p ⊆ p′ ⇐⇒ P(p, p′) 6= ∅
is a quasi-order. P is said to be a strict preorder if ⊆ is a partial order.

Definition 0.2. Let C be a category and P be a subcategory of C. Then (C,P) is called a

category with subobjects if the following hold:

(1) P is a strict preorder with vP = vC.
(2) Every f ∈ P is a monomorphism in C.
(3) If f, g ∈ P and if f = hg for some h ∈ C, then h ∈ P.

In a category with subobjects, if f : c → d is a morphism in P, then f is said to be an

inclusion. And we denote this inclusion by j(c, d).

Definition 0.3. Let C and D be two categories. We shall say that a functor F : C → D is

v-injective if vF is injective. F is said to be v-surjective if vF is surjective.

In the following, (C,P) is a category with subobjects.

Definition 0.4. A morphism e : d→ c is called a retraction if c ⊆ d and j(c, d)e = 1c.

Definition 0.5. A normal factorization of a morphism f ∈ C(c, d) is a factorization of the

form f = euj where e : c→ c′ is a retraction, u : c′ → d′ is an isomorphism and j = j(d′, d)

for some c′, d′ ∈ vC with c′ ⊆ c, d′ ⊆ d.

It may be noted here that normal factorization of a morphism is not unique. But if

f = euj = e′u′j′ are two normal factorizations of f, then it can be shown that eu = e′u′ and

j = j′. And here we denote eu by f◦. Observe that f◦ is independent of the factorization

and that f◦ is an epimorphism. We call f◦ the epimorphic part of f .
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Definition 0.6. Let d ∈ vC. A map γ : vC → C is called a cone from the base vC to the

vertex d (or simply a cone in C to d) if γ satisfies the following:

(1) γ(c) ∈ C(c, d) for all c ∈ vC.
(2) If c′ ⊆ c then j(c′, c)γ(c) = γ(c′).

Given the cone γ we denote by cγ the the vertex of γ and for each c ∈ vC, the morphism

γ(c) : c→ cγ is called the component of γ at c.

Definition 0.7. The cone γ is said to be normal if there exists c ∈ vC such that

γ(c) : c→ cγ is an isomorphism.

Several normal cones can be derived from a given normal cone. Let σ be a normal cone

with vertex d and let f : d→ d′ be an epimorphism. Then σ ∗ f defined below is a normal

cone.

(σ ∗ f)(a) = σ(a)f (1)

Definition 0.8. A normal category is a pair (C,P) satisfying the following :

(1) (C,P) is a category with subobjects.

(2) Any morphism in C has a normal factorization.

(3) For each c ∈ vC there is a normal cone σ with vertex c and σ(c) = 1c.

Now we can see that the normal cones in a normal category form a regular semigroup,

with product as follows.

Theorem 1. (cf. [9] ) Let (C,P) be a normal category and let TC be the set of all normal

cones in C. Then TC is a regular semigroup with product defined as follows :

For γ, σ ∈ TC.
(γ ∗ σ)(a) = γ(a)(σ(cγ))◦ (2)

where (σ(cγ))◦ is the epimorphic part of the σ(cγ).

Then it can be seen that γ ∗σ is a normal cone. TC is called the semigroup of normal cones

in C. σ is an idempotent in TC if and only if σ(c) = 1c where c is the vertex of σ. And if

γ, γ′ ∈ TC, then γL γ′ ⇐⇒ cγ = cγ′ .

Let S be a regular semigroup. The category of principal left ideals of S is described as

follows. Since every principal left ideal in S has at least one idempotent generator, we may

write objects (vertexes) in L(S) as Se for e ∈ E(S). Morphisms ρ : Se → Sf are right

translations ρ = ρ(e, s, f) where s ∈ eSf and ρ maps x 7→ xs. Thus

vL(S) = {Se : e ∈ E(S)} and L(S) = {ρ(e, s, f) : e, f ∈ E(S), s ∈ eSf}. (3)

The following proposition gives the general properties of L(S).

Proposition 1. (cf. [9] ) Let S be a regular semigroup. Then

(1) L(S) is a normal category.

(2) ρ(e, u, f) = ρ(e′, v, f ′) if and only if eL e′, fL f ′, u ∈ eSf , v ∈ e′Sf ′ and v = e′u.

(3) The map ρ(e, s, f) 7→ s is a bijection of L(Se, Sf) onto eSf for all e, f ∈ E(S).
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(4) If ρ(e, u, f) and ρ(e′, v, f ′) are composable morphisms in L(S) (so that fL e′) and

u ∈ eSf and v ∈ e′Sf ′, then ρ(e, u, f)ρ(e′, v, f ′) = ρ(e, uv, f ′).
(5) A morphism ρ = ρ(e, s, f) is a monomorphism [epimorphism] if and only if ρ is

injective [surjective]; this is true if and only if eRs [sL f ].

(6) A morphism ρ is the inclusion Se ⊆ Sf if and only if ef = e and ρ = ρ(e, e, f).

Then ρ′ : Sf → Se is a retraction if and only if ρ′ = ρ(f, g, e) = ρ(f, g, g) where

g ∈ Le ∩ ω(f).

(7) Let ρ = ρ(e, u, f) be a morphism in L(S). For any g ∈ Ru ∩ ω(e) and h ∈ E(Lu)

ρ = ρ(e, g, g)ρ(g, u, h)ρ(h, h, f)

is a normal factorization of ρ. Every normal factorization of ρ has this form.

Proposition 2. (cf. [9] ) Let S be a regular semigroup, a ∈ S and f ∈ E(La). Then for

each e ∈ E(S), let ρa(Se) = ρ(e, ea, f). Then

(1) ρa is a normal cone in L(S) with vertex Sa.

(2) Mρa = {Se : e ∈ E(Ra)}.
(3) ρa is an idempotent in TL(S) iff a ∈ E(S).

The normal cone ρa is called a principal cone.

Proposition 3. (cf. [9] ) If S is a regular semigroup then the mapping a 7→ ρa is a

homomorphism from S to TL(S). Further if S has an identity, then S is isomorphic to

TL(S).

Normal categories and linear transformation semigroup

Let V be an arbitrary vector-space. TV is the multiplicative semigroup of all singular

linear transformations on V . Now we characterize the normal category L(TV ) associated

with the principal left ideals of TV . The product of transformations is taken in the order it

is written .i.e from left to right. In this section we use S and TV interchangably to denote

the semigroup of singular linear transformations on V . Here for any α ∈ TV , we denote

by Nα the null space of α consisting of all y ∈ V such that yα = 0. Since TV is a regular

semigroup, by Proposition 1, L(TV ) forms a normal category. And we proceed to charac-

terize all the normal cones in this category. The following properties of TV will be used often.

Lemma 1. (cf. [1] ) If α, β ∈ TV , then

(1) αL β ⇐⇒ V α = V β.

(2) αRβ ⇐⇒ Nα = Nβ .

(3) α ∈ TV is an idempotent ⇐⇒ V = Nα ⊕ V α.

Every vector-space has a basis, and let BA be a basis of A for any proper subspace A of

V . Ã will denote an idempotent transformation (a projection) with range A. We will use

SA to denote the principal left ideal of TV generated by Ã. When A = {x}, we write Sx

for SA and x̃ for Ã.
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Lemma 2. Let A,B ⊆ V and ρ(Ã, α, B̃) be a morphism from SA to SB. Then for

any x ∈ A, xα ∈ B. Also if ρ(Ã, α, B̃), ρ(Ã, β, B̃) are morphisms from SA to SB, then

ρ(Ã, α, B̃) = ρ(Ã, β, B̃) if and only if bα = bβ ∀b ∈ BA.

Proof. By the definition of a morphism in L(TV ), α ∈ ÃSB̃. So by lemma 1, Vα ⊆ VB̃ = B.

Hence xα ∈ B for any x ∈ V and in particular for any x ∈ A.

To prove the second part, if ρ(Ã, α, B̃) = ρ(Ã, β, B̃), then by Proposition 1, Ãα = Ãβ. And

so xα = xβ ∀x ∈ A and in particular for b ∈ BA. Conversely if bα = bβ ∀b ∈ BA , since

a linear transformation on A is completeley detrmined by the values on its basis, we have

Ãα = Ãβ and so, we have ρ(Ã, α, B̃) = ρ(Ã, β, B̃). �

Proposition 4. All normal cones in the category L(TV ) are the principal cones.

Proof. Given α ∈ S , then we know that ρα is a normal cone in L(S)(by Proposition 2).

Now we need to show that every normal cone is principal. Let σ be a normal cone in L(TV ),

then cσ = SA for some A ⊆ V . Consider σ(Sb) for b ∈ BV . Let σ(Sb) = ρ(b̃, ub, Ã). By

Lemma 2, bub ∈ A. Define α on V as follows:

bα = bub ∀b ∈ BV where ub is as above.

Clearly α is well-defined. Since bub ∈ A ∀b ∈ BV , and a linear transformation on V

is completely determined by the values on the basis elements, α is a linear transformation

from V with image contained in A. Since σ is a normal cone with vertex SA, there is a

component σ(SC) such that σ(SC) is an isomorphism. Let σ(SC) = ρ(C̃, β, Ã). Then by

Lemma 2, bβ ∈ A for all b ∈ BC . Since σ(SC) is an isomorphism, Im β = A by Proposition

1.

Now we show that Im α = A. Let y ∈ A. Then there exists b ∈ BC such that bβ = y. Now

ρ(b̃, ub, Ã) = σ(Sb) = j(Sb, SC)σ(SC) = j(Sb, SC)ρ(C̃, β, Ã).

Therefore ρ(b̃, ub, Ã) = ρ(b̃, b̃, C̃)ρ(C̃, β, Ã) = ρ(b̃, b̃β, Ã) (by Proposition 1).

And ub = b̃β so that bα = bub = b(b̃β) = bβ = y.

Hence α is onto A. Now we show that σ = ρα

Since Im α = A, we see that the vertex of ρα is SA = cσ.

So the cones σ and ρα have the same vertex. Now we show that for D ⊆ V , if σ(SD) =

ρ(D̃, δ, Ã); then ρ(D̃, δ, Ã) = ρ(D̃, D̃α, Ã).

For that by Lemma 2, it is sufficient to prove that bδ = bα ∀b ∈ BD.

If b ∈ BD, then Sb ⊆ SD and by the definition of the normal cones, σ(Sb) = j (Sb, SD)σ(SD) =

ρ(b̃, b̃, D̃)ρ(D̃, δ, Ã) = ρ(b̃, b̃δ, Ã). But σ(Sb) = ρ(b̃, ub, Ã). Equating these we get for

bb̃δ = bub. So bδ = bub (since bb̃ = b ) .i.e bδ = bα ∀b ∈ BD.

Therefore ρ(D̃, δ, Ã) = ρ(D̃, D̃α, Ã).

Hence σ = ρα. Thus all normal cones are of the form ρα for some α ∈ S. �

In general, for a regular semigroup S, and the associated normal category L(S), the

semigroup of normal cones in L(S) is not isomorphic to S. By Proposition 3, we have a

homomorphism from S to TL(S) which may not be one-one or onto. But in the case of TV ,

we indeed have an isomorphism.
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Theorem 2. TL(TV ) is isomorphic to TV .

Proof. Consider the map α 7→ ρα from TV to TL(TV ). This map is a semigroup homomor-

phism (By Proposition 3). And by Proposition 4, the map is onto. Now we need to show

that it is 1-1. Let α, β ∈ TV such that ρα = ρβ . Then for any b ∈ BV , ρα(Sb) = ρ(b̃, b̃α, ε)

where ε ∈ E(Lα) and ρβ(Sb) = ρ(b̃, b̃β, δ) where δ ∈ E(Lβ).

And since ρα = ρβ , we have ρ(b̃, b̃α, ε) = ρ(b̃, b̃β, δ) and so b̃α = b̃β. It follows that bα = bβ

for all b ∈ BV . And α = β.

Hence the result. �

0.1. The category of subspaces of V . Now we show that the category L(TV ) can be

identified with the category of proper subspaces of V - the Subspace category. It is easy to see

that all the proper subspaces of a vector-space V with linear transformations as morphisms

forms a category P(V ) (cf. [11] ). Observe that P(V ) has an obvious choice of subobjects

since the subspace-inclusion of A ⊆ B gives a natural preorder in P(V ). And composition

of two morphisms is composition. Now we proceed to show that this category is a normal

category.

Proposition 5. P(V ) is a normal category.

Proof. The inclusions in P(V ) are precisely inclusion transformations .i.e we have an in-

clusion j : A → B if and only if A ⊆ B as subspaces of V . q : B → A is a retraction if

and only if A ⊆ B and j(A,B)q = 1A. It is easy to see that any linear transformation f

from A to B has a factorization f = euj where e : A → A′ is a retraction, u : A′ → B′ is

a vector-space isomorphism and j = j(B′, B) is an inclusion when B′ = Im f and A′ is a

cross-section of the partition of A determined by f . Given any A ⊆ V , let σ be a cone in

P(V ) with vertex A defined as follows. Let u : V → A be a linear transformation such that

u(b) = b ∀b ∈ BA. For any B ⊆ V , define σ(B) = u|B : B → A. Then σ is a normal cone

with σ(A) = 1A. Hence P(V ) is a normal category. �

Now we proceed to show that P(V ) is isomorphic to the category of principal left ideals

of TV as normal categories. For that, we show that there exists an inclusion preserving

functor from L(TV ) to P(V ) which is an order isomorphism, v-injective, v-surjective and

fully-faithful.

We define a functor F : L(TV ) → P(V ) as follows. For SA = TVA ∈ vL(TV ) and a

morphism ρ(Ã, α, B̃) in L(TV )

vF (SA) = A and F (ρ(Ã, α, B̃)) = α|A. (4)

By Lemma 2, α maps vectors of A to vectors of B. So the restriction of α to A gives a

well-defined linear transformation from A to B. Now we show F is an inclusion preserving

isomorphism of normal categories. For that first we need to show that F is functorial.

Lemma 3. F as defined in equation 4 is a well defined functor from L(TV ) to P(V ).

Proof. vF is well-defined by Lemma 1. Now if ρ(Ã, α, C̃) = ρ(B̃, β, D̃). Then by Proposition

1 and Lemma 1 , we get ÃL B̃ ; and hence A = B. And similarly C = D.
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Now α|A = Ãβ|A ( By Proposition 1)

= β|B since A = B and Ãis an idempotent; we have Ã|A = 1A.

Hence F is well defined on morphisms as well.

Now let ρ(Ã, α, B̃), ρ(B̃, β, C̃) be two composable morphisms in L(TV ); then by Proposition

1, F (ρ(Ã, α, B̃)ρ(B̃, β, C̃)) = F (ρ(Ã, αβ, C̃)) = αβ|A.

Also F (ρ(Ã, α, B̃))F (ρ(B̃, β, C̃)) = α|Aβ|B = αβ|A since α|A : A → B and β|B : B → C .

Hence F is functorial. �

Lemma 4. F is inclusion preserving.

Proof. Suppose SA ⊆ SB; then by Lemma 1 and Proposition 1, A ⊆ B.

Also F (j(SA, SB)) = F (ρ(Ã, Ã, B̃)) = Ã|A = j(A,B) .

Thus F is inclusion preserving. �

Lemma 5. vF is an order isomorphism.

Proof. Suppose SA ⊆ SB. Then by lemma 1 and Proposition 1, A ⊆ B.

Conversely if SA ⊆ SB, then A ⊆ B.

Hence SA ⊆ SB ⇐⇒ A ⊆ B and so vF is an order isomorphism. �

Lemma 6. F is v-surjective and full.

Proof. Let A ( V then clearly there exists an idempotent transformation in TV say Ã such

that the Im Ã = A. Now F (SA) = A. Hence F is v-surjective.

Now let f be function from A to B and let α = Ãf . Then α is a full transformation with

image B and α|A = f . So α ∈ ÃSB̃.

And F (ρ(Ã, α, B̃)) = α|A = f .

Hence F is full. �

Lemma 7. F is v-injective and faithful.

Proof. Let Ã and B̃ denote idempotent transformations with image A and B respectively.

And let F (SÃ) = F (SB̃) in P(V ). Then A = B. And by lemma 1, SÃ = SB̃. Hence F

is v-injective.

Now let ρ(Ã, α, C̃) and ρ(Ã, β, C̃) be morphisms from SÃ to SC̃ in L(TV ).

And let F (ρ(Ã, α, C̃)) = F (ρ(Ã, β, C̃)) in P(V ).

Then α|A = β|A so that by Lemma 2, we get ρ(Ã, α, C̃) = ρ(Ã, β, C̃).

And hence F is faithful. �

Theorem 3. L(TV ) is isomorphic to P(V ) as normal categories.

Proof. By the previous lemmas 3, 4, 5, 6, 7 ; F is an inclusion preserving functor from

L(TV ) to P(V ) which is an order isomorphism, v-injective, v-surjective and fully-faithful.

Hence the theorem. �

Since P(V ) forms a normal category, the semigroup of normal cones of P(V ) will form

a regular semigroup. Now we prove that it is TV .

Theorem 4. TV is isomorphic to the semigroup of normal cones in P(V ).
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Proof. By Theorem 3, P(V ) is isomorphic to L(TV ) as normal categories. So the semigroup

of normal cones associated with these two categories will be isomorphic to each other. Hence

TP(V ) is isomorphic to TL(TV ) as semigroups. But by Theorem 2, TL(TV ) is isomorphic

to TV . Hence TP(V ) is isomorphic to TV as semigroups. �
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MULTI-OBJECTIVE APPROACH FOR OPTIMISATION OF AN

ECO-EFFICIENT REVERSE LOGISTICS NETWORK

JYOTI DARBARI, VERNIKA AGARWAL AND P.C.JHA

Abstract. One of the key issues concerning manufacturers is designing a reverse lo-

gistics (RL) network which goes beyond just cost reduction and customer satisfaction.

The aim of this study is to adopt a sustainable approach for designing a reverse logis-

tics network for End-of-life (EOL) and End-of-use (EOU) electronic products which can

also generate profit for the company. The purpose of the research is to investigate how

electronic product returns are handled in a RL network and which recovery options are

most feasible and effective. It also determines the optimal routes for flow of products

and selection of vehicles for transportation.

Introduction

Due to rapid development in technology, electronic products have a short life cycle and

soon become obsolete but still retain some value which can be recovered. Some products

are recalled but still can be refurbished to be resold again. There are end of life products

which can be dismantled for component recovery and recycled for material recovery. The

manufacturer can choose from the various recovery options as per the quality of the returns

to recovery maximum value from EOL and EOU electronic returns in the most sustainable

way. However, an efficient coordination is needed amongst all the facilities of the RL net-

work which can be obtained with an effective design of the network. The management of

the recovery process also requires an efficient transportation network for collection of the

returns and redistribution of the refurbished products and components. The major contri-

bution towards carbon emissions comes from the transportation activities of the network

and the emissions level is based on the distance travelled between facilities. In addition, the

transportation cost contributes to a major part of the total cost of the network. Therefore to

maximise the revenue generated, the transportation distance must also be minimised and to

mitigate the impact of transportation on the environment, unnecessary transport activities

must be avoided and appropriate vehicle selection must be done.

Model description

The proposed network [2] consists of a collection zone consisting of collection/ inspection

centres (CICs), fabrication centre (FC), integrated dismantling centre (DMC) and compo-

nent fabrication centre (CFC), secondary markets, service centre, spare market, recycling

centre and disposal centre as shown in Figure 1. The flow of returned products across various

echelons depends on value added recovery options as well as their demand in the secondary
21
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markets. Depending on the condition of the returned products, they are classified into two

categories at CICs: refurbishable and non refurbishable and are accordingly transported to

either FC or DMC. The products which are refurbished at FC are sold at the secondary mar-

kets where the demands of these products are high owing to large price differential between

the old and the new products. At DMC, the products are dismantled and their components

are further classified into three categories based on whether they can be fabricated, recycled

or disposed. The fabricated components are used at FC for refurbishing of the product,

at the service centre for repairing the products and after satisfying the demands of both

the FC and the service center, the remaining fabricated components are sold in the spare

markets. The components move internally from the DMC to CFC where the components

are fabricated for further use. The fabricated components are transported from CFC to

service centre, fabrication centre or spare markets along fixed routes and are carried by

appropriately selecting a vehicle based on its capacity and the amount to be transported.

Transportation of components to the recycling centre and the disposal centre is managed

externally by agents. The recycling agent pays a certain revenue for the components and

material collected for recycling but the disposal cost is borne by the manufacturer who pays

the agent a fixed per unit revenue for proper disposal.

Assumption

Locations and capacities of CICs are known and fixed; locations of DMC, FC and disposal

center are known and fixed; demand of the fabricated products and components are known;

there is no holding of inventory at any facility; the estimated emission rates of CO2 for

available vehicles are known.

Figure 1: RL Network Design

Mathematical Model

Sets

Set of products indexed by p, set of components indexed by a, set of CICs indexed by

l, set of secondary markets indexed by m, set of small trucks indexed by t. Ir and Irare

sets of nodes in the rth and rth cluster constructed for flow of products for fabrication and
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dismantling respectively, V r = Ir ∪ {0} where 0 represents FC and V r′ = Ir′ ∪ {0′} where

0’ represents DMC.

Parameters

CICn , CDMn and CFCn are per unit cost of inspection, dismantling and fabrication of

nth product respectively. CCFa and CDCa are per unit cost of fabrication and disposal of

dth component respectively. TC is the transportation cost (per km) of the returned products

transported from CIC to DMC and TS is the unit transportation cost of the disassembled

components transported from DMC to disposal center, TI is the unit transportation cost

of the fabricated components transported from CFC to FC, TK is the unit transportation

cost of the fabricated components transported from CFC to service center, CHt and CLt

are the costs associated with carbon emission of the tth truck for transporting components

from CFC along Route 1 and Route 2 resp. RXnl are the units of nth product collected at

lth CIC, SDEMa and FDEMa are the demands of the dth component at the service center

and at the FC, Qna takes value 1 if nth product consists of dth component, otherwise zero,

ρn is the fraction of total units of the nth product collected at CICs to be transported

for fabrication,µa, γa, δa, ωa are fractions of total units of the dth component transported

from FC to recycling centre, transported from DMC to CFC, transported from DMC to

recycling center and transported from CFC to service centre respectively. ,DEMmn and

PREVmn are the demands of and the revenue generated by the nth product atmth secondary

market respectively. FREVa , CREVa , RREVa and SREVa are revenues generated by dth

component at FC, spare market, recycling center and service center respectively. is the

distance between nodes ir and jr of the rth cluster set Vr, and is the distance between

nodes ir and jr of the rth cluster set Vr. , are real numbers used to avoid subtouring

in the routes within each cluster. wta is the weight of ath component. CO2k and CO2t

are the carbon emission per km of the trucks used for product flow and component flow

resectively.Route1 and Route2 are the distances travelled from CFC to FC to service centre

and from CFC to spare market respectively.

Variables

Zn and On are the units of nth product transported from CICs to DMC and from CICs

to FC resp , Bmn are the number of returned units of nth product transported from FC

to mth secondary market, Ga, Va , DISa, RKa, RIa and RFa are units of ath component

transported to CFC, recycling center, disposal center, from CFC to service center, CFC to

FC and from CFC to spare market respectively. αa takes value 1 if the number of units

of ath component transported to the service center do not exceed the demand , else takes

value 0, βa takes value 1 if the number of units of ath component transported to the FC do

not exceed the demand else takes value 0. takes value 1 if the truck travels from node ir

to node jr of cluster sets V r, otherwise zero, takes value 1 if the truck travels from node

ir to node jr of cluster sets Vr, otherwise zero . Ht takes value 1 if vehicle t is selected for

Route1 otherwise zero, Lt takes value 1 if vehicle t is selected for Route 2 otherwise zero, R

is the total weight of the components transported via Route1 and RS is the total weight of

the components transported via Route2.

Clustering Algorithm
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We propose a two stage algorithm:

• To cluster nodes (CICs), based on proximity and determine the number of CICs

each truck will visit in each cluster.

• To determine the optimal route for each truck using TSP

K- means Clustering k-means algorithm is the most commonly used clustering techniques.

The k-means algorithm takes the input parameter, k, which is the number of clusters to

be formed. Staring with randomly selecting k of the data points as the cluster means, L

data points are assigned to the clusters based on its proximity with the cluster means. New

means for each cluster are computed and the process iterates until the value of the criterion

function converges.

Description: There are total L numbers of CICs which are the nodes. Clustering is

based on the distance measure and the total amount of returns collected for fabrication

/dismantled per cluster not exceeding the truck capacity. The steps are as follows:

• The number of clusters N1 and N2 for transportation of products to be fabricated

and dismantled respectively are calculated as:

N1(or N2)= [total returns to be fabricated(or dismantled )/ truck capacity where

[x] is the smallest integer greater than equal to x

• Choose N1 and N2 arbitrary cluster means mj , m′
j

• Assign data points to clusters as follows:

wl ∈ Ck iff ‖wl − mk‖2 ≤ ‖wl − mp‖2 ∀p ∈ N1.and
∑

wl∈Ck

∑
n ρnRXnl ≤

truckcapacity

wl ∈ C ′
k iff ‖wl −m′

k‖2 ≤ ‖wl −m′
p‖2 ∀p ∈ N2.and

∑
wl∈C′

k

∑
n(1 − ρn)RXnl ≤

truckcapacity

• Calculate the value of the criterion functions,

EFC =
∑L

l=1

∑N1
p=1 Ylp‖wl −mp‖2 and EDC =

∑L
l=1

∑N2
p=1 Slp‖wl −m′

p‖2
where Yip and Sip are 1 if the lth data pointr assigned pth cluster, else 0.

• For each cluster, the new mean is computed as follows:

mp∗ = 1/|Cp|
∑

wl∈Cp
wl and m′

p∗ = 1/|C ′
p|
∑

wl∈C′
p
wl where —cp— in the number

of nodes in cluster p

• For the new set of cluster means, assign the data points to the clusters.

• Calculate the value of the criterion functions for the new clusters.

• Repeat steps 5 to 7 until the criterion functions converge.

Problem Formulation

Problem P1:

Objective : Maximize profit

∑

m

∑

n

PREVmnBmn +
∑

a

{SREVaRKa +RREVa + FREVaRIa + CREVaRFa} −

∑

a

{TSDISa + TKRKa + TIRIa} −
∑

t

{CHtHtRoutel + CLtLtRoutel2}−
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TC[
∑

r

∑

i

∑

j

{dirjrxirjr + dirjrxirjr}]−
∑

n

[CICn

∑

l

RXnl + CDMnZnCFCnBmn]−

∑

a

(CCFaGa + CDCaDISa)

The objective intents to maximize profit which is the difference between the total revenue

generated and the various costs namely transportation cost and cost incurred at various fa-

cilities while selecting trucks for transportation of products and components across facilities

with least carbon emission factor per km. subject to:

On =
∑

l

ρnRXnl ∀n (1)

∑

m

Bmn 6 On ∀n (2)

Bmn 6 DEMmn ∀m,n (3)

Zn =
∑

l

(1− ρn)RXnl ∀n (4)

Ga =
∑

n

γaQnaZn ∀a (5)

Va =
∑

n

δaQnaZn ∀a (6)

DISa =
∑

n

(1− γa − δa)QnaZn ∀a (7)

RKa 6 ωaGa ∀a (8)

RIa 6 φaGa ∀a (9)

RKa > SDEMa ∀a (10)

RIa > FDEMa ∀a (11)

RFa = (Ga −RKa −RIa) ∀a (12)
Ir∑

jr=0

xjrjr = 1 ∀ir 6= jr, ir ∈ V r; r = 1, 2...N1 (13)

Ir∑

ir=0

xirjr = 1 ∀ir 6= jr, jr ∈ V r; r = 1, 2...N1 (14)

ejr − eir ≥ (Ir + 1)xirjr − Ir ∀ir 6= jr, ir ∈ Ir; (15)

Ir′∑

jr=0

xirjr
′ = 1 ∀ir 6= jr, ir ∈ V r′; r = 1, 2...N2 (16)

Ir′∑

ir=0

xirjr
′ = 1 ∀ir 6= jr, jr ∈ V r′; r = 1, 2...N2 (17)
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ejr − eir′ ≥ (I ′r + 1)xirjr
′ − I ′r ∀ir 6= jr, ir ∈ I ′r; (18)

R =
∑

a

(RKa +RIa)wta (19)

RS =
∑

a

RFawta (20)

R ≤
∑

t

CAPtHt (21)

∑

t

Ht = 1 (22)

RS ≤
∑

t

CAPtLt (23)

∑

t

Lt = 1 (24)

Bmn, Zn, On, Va, Ga, DISa, RIa, Rka, RFa ≥ 0 ∀m,n, a ∈ Integer (25)

Ht, Lt, xijjr, k
′
irjr ∈ {0, 1} ∀ir, a, jr, t (26)

The constraints (1)-(3) determine the total number of units of each product transported

to fabrication center after initial inspection and after realizing the total demand at the

secondary markets. The constraints (4)-(12) determine the volume flow of products/ com-

ponents at various facilities while satisfying the demand of service and fabrication center.

The constraints (13)-(18) determines the transportation between the clusters of collection

centers using travelling salesman problem to minimize the distance travelled for the trans-

portation of products to FC and DMC respectively. The constraints (19)-(24) determine the

selection of vehicle for component flow. Constraint (25) and (26) determine non negativity

and binary variables.

Case study

The above model can be efficiently utilised by a company wanting to adopt a more sus-

tainable approach to improve the economical and environmental performance of their RL

network. Here we consider a case of an electronics manufacturing firm which has 12 collec-

tion centers, a dismantling center and a fabrication center and a service center. There are 2

secondary markets, and a spare market where the refurbished products and components can

be sold respectively. A fleet of homogenous vehicles of capacity 2500kg for distribution of

returned products and four vehicles of varying capacities for distribution of fabricated com-

ponents are also available. The company manufactures 4 variants of both air conditioners

and refrigerators of varying weights. Their major components are: Compressor (A1), Con-

denser (A2), Orifice Tube/ Expansion Valve (A3), Evaporator (A4), Accumulator/ Drier

(A5), Refrigerant (A6), Valve (A7), Compressor Clutch (A8), Refrigerant Oil (A9), Hose

Assembly (A10), Switch (A11), Control Panel (A12), Metal and plastics (A13). All compo-

nents are common to both except A5, A7, A8, A9, A10 and A12 which are only in AC. The

manufacturer would bear transportation cost (per km) of ‘50 for the returned products to
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and fro FC/DC to CICs, Unit transportation cost(per component) of ‘.7 from DC to disposal

centers, of ‘ 8 from CFC to FC and of ‘ 7 from CFC to service center. The cost is based on

various factors such as weight of the unit, loading and deloading. Cost of the tth truck for

transporting components from the CFC is ‘ 20,30,40,25 respectively. The value of CIC is

‘70, ‘60, ‘80, ‘90 and ‘80, ‘70, ‘70, ‘60 CDM is ‘70, ‘95, ‘80, ‘90 and ‘80, ‘100 , ‘80, ‘90, CFC

is ‘110, ‘115, ‘120, ‘135 and ‘140, ‘115, ‘120, ‘125 for ACs and refrigerators and their weights

are 25kg, 30kg, 40kg, 50kg and 50kg, 70kg, 85 kg, 110kg respectively. We assume the frac-

tion of returned products to be fabricated as 0.52, 0.5, 0.53, 0.55 and 0.56, 0.5, 0.54, 0.5 for

ACs and refrigerators respectively. The revenue, demand of ACs from secondary market1 is

‘4000,4500,5000,5400 and 8,9,4,3 while for refrigerators the revenue and demand are ‘5000,

5400,5800, 7000 and 4,3,2,1 from secondary market2 is ‘4000,4500,5000,5400 and 10,8,5,3

while for refrigerators the revenue and demand are ‘5000, 5400,5800, 6200 and 4,5,3,2. The

maximum distance allowed for route1 is 60km and route2 is 40km. The capacities of the

four trucks 940, 1880, 2000, 2500 kg.

Result

The proposed model is validated using the above data and solved using LINGO11.0. The

location of FC, DMC and CIC are shown in figure 2 while figure 3 shows the clusters of CICs

based on the distance between the CICs and FC or DMC and the capacity of the vehicle

clusters as shown in figure 2 are obtained. Figure 4 and 5 given below show the optimal

routes within each clusters for the flow of products.

Figure 2: Location of CIC, FC and DMC

For flow of components routes were fixed. For route 1, truck 1 is selected (weight of

components 676kg) and for route 2, truck 3 is selected (weight of components 2710kg). For

the given set of data, the optimal profit obtained in the network ‘553452.4. About 60
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Figure 3: Clusters of CICs

Figure 4: Optimal Routes with respect to FC

Figure 5: Optimal Routes with respect to DMC

Conclusion

A network designed for product recovery is economically viable if the manufacturer takes

full responsibility of the entire life cycle of the product and the returned product moves

only in the direction of value adding recovery. The model demonstrates the impact of

demand of fabricated products and components on the economic potential of the RL network.

Fabricated components are also utilised for fabrication of the products resulting in cost

savings. The paper focuses on the appropriate choice of recovery options as per the state of

the returned products to derive maximum utility which implicitly leads to profit and on the

planning of suitable routes for flow of returns to minimise the distance between the facilities

and therefore the carbon emission.
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ROBE’S RESTRICTED PROBLEM OF 2+2 BODIES WITH OBLATE

PRIMARIES

BHAVNEET KAUR

Abstract. In this problem, one of the primaries of mass m∗
1 is a rigid spherical shell

filled with a homogeneous incompressible fluid of density ρ1. The smaller primary of

mass m2 is an oblate body outside the shell. The third and the fourth bodies (of mass

m3 and m4 respectively) are small solid spheres of density ρ3 and ρ4 respectively inside

the shell, with the assumption that the mass and the radius of the third and the fourth

body are infinitesimal. We assume that m2 is describing a circle around m∗
1. The masses

m3 and m4 mutually attract each other, do not influence the motions of m∗
1 and m2

but are influenced by them. We also assume that masses m3 and m4 are moving in the

plane of motion of mass m2. In the paper, equilibrium solutions of m3 and m4 and their

linear stability are analyzed.

Introduction

[?] has investigated a new kind of restricted three-body problem in which one of the

primaries is a rigid spherical shell filled with a homogeneous incompressible fluid of density

ρ1. The mass of the shell including the mass of the fluid is m∗1. The second primary is

a mass point m2 outside the shell. The third body of mass m3, supposed moving inside

the shell, is a small solid sphere of density ρ3, with the assumption that the mass and the

radius of the third body are infinitesimal. He further assumed that the mass m2 describes

a Keplerian orbit around the mass m∗1. He has proved that the point (−µ, 0), the centre of

the first primary, is the only equilibrium solution for all values of the density parameter K,

mass parameter µ, eccentricity parameter e.[?] have proved that besides (−µ, 0), there are

other equilibrium solutions.

Celestial bodies in general are not spherical, rather they are oblate or axis symmetric

bodies. It is therefore essential that we concentrate on primaries which are axis symmetric

bodies and preferably on oblate bodies. Many authors have worked taking primaries as

oblate bodies. [?] have studied the effect of oblateness on the location and stability of

equilibrium solutions in Robe’s circular problem.

Many authors have worked on problem of 2+2 bodies. Significant work is that of [?]. He

studied equilibrium solutions of the restricted problem of 2+2 bodies. He further studied

the linear stability of all the equilibrium solutions.

In this paper, we shall study the case of the restricted problem of 2+2 bodies in the

Robe’s setup when the smaller primary is an oblate body.
31
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Statement of the Problem and Equations of Motion

In this problem , one of the primaries of mass m∗1 is a rigid spherical shell filled with

homogeneous incompressible fluid of density ρ1. The second primary of mass m2(m∗1 > m2)

is an oblate body outside the shell. The third and the fourth body (of mass m3 and m4

respectively) are small solid spheres of density ρ3 and ρ4 respectively inside the shell, with

the assumption that the mass and radius of the third and the fourth body are infinitesimal.

We assume that m2 is moving around m∗1 with angular velocity ω (say) in a circular orbit

of radius a′. The masses m3 and m4 mutually attract each other but do not influence the

motions of m∗1 and m2. We also assume that masses m3 and m4 are moving in the plane of

motion of mass m2.

Let the orbital plane of m2 around m∗1 is taken as the ξη plane and the origin of the co-

ordinate system is at the centre of mass O of the two finite bodies. The coordinate system

Oξη is as shown in the Figure 1. Let the synodic system of coordinates initially coincident

with the inertial system rotate with angular velocity ω. This is the same as the angular

velocity of m2 which is describing a circle around m∗1. Let initially the principal axes of m2

be parallel to the synodic axes and their axes of symmetry be perpendicular to the plane of

motion. Since m2 is revolving without rotation about m∗1 with the same angular velocity as

that of the synodic axes, the principal axes of m2 will remain parallel to them throughout

the motion.

Let the coordinates of m3 and m4 be (ξ, η) and (ξ′, η′) respectively.

M1(x1, 0) 

 

(Oblate body)

M3 ( , !) 

M4 ( ", !") ! 

 

R13 

R34 

R14 
R 

R  R42 
R32 

 !"
#$ 

(!%&) 

(!'&) 

M2 (x2, 0)

(!( ) 

a a 

c

!(& 

Figure 1. Geometry of the Robe’s restricted problem of 2 + 2

bodies with the smaller primary m2 an oblate body
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Various forces acting on M3 with mass m3 are:

1. The gravitational force F34 due to m4

F34 =
Gm3m4R34

R3
34

.

2. The gravitational force FA exerted by the fluid of density ρ1

FA = −
(

4

3

)
πGρ1m3R13,

where Rij = MiMj, M1 is the centre of the shell m∗1 and M3 the centre of m3.

3. The force of buoyancy FB is

FB =

(
4

3

)
π
Gρ21m3R13

ρ3
.

4. The gravitational force F32 acting on m3 due to the oblate body m2 is

F32 = Gm2m3

(
1

R3
32

+
3

2

A

R5
32

)
R32

The equation of motion of m3 in the inertial system is

m3R̈ = F34 + FA + FB + F32

R̈ =
Gm4R34

R3
34

− 4

3
πGρ1

(
1− ρ1

ρ3

)
R13 +Gm2

(
1

R3
32

+
3

2

A

R5
32

)
R32

where R = OM3 and Rij = MiMj.

Now, we determine the equation of motion of m3 in the synodic system.

In the rotating (synodic) system, the equation of motion of m3 is

∂2r

∂t2
+ 2ω × ∂r

∂t
+ ω × (ω × r) =

Gm4R34

R3
34

− 4

3
πGρ1

(
1− ρ1

ρ3

)
R13

+Gm2

(
1

R3
32

+
3

2

A

R5
32

)
R32, (1)

where r = OM3 and ω = ωk̂ = (constant).

The angular velocity ω of the oblate body m2 is

ω2 =
G (m∗1 +m2)

a′3
+

3

10

G (m∗1 +m2)
(
a2 − c2

)

a′5
.

We, now, fix the units such that m∗1 + m2 = 1, a′ = 1. We choose t in such a way that

G = 1.

We further take

µ1 =
m∗1

m∗1 +m2
, µ2 =

m2

m∗1 +m2
so that µ1 + µ2 = 1.
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Let µ2 = µ, (say), then µ1 = 1− µ.

Thus the coordinates of m∗1 and m2 are (−µ, 0) , (1− µ, 0).

In dimensionless variables, we have

ω2 = 1 +
3

2
A where A =

a2 − c2
5a′2

. (2)

The Equations of motion of m3 in the dimensionless cartesian coordinates are

ξ̈ − 2ωη̇ = Vξ, (3)

η̈ + 2ωξ̇ = Vη, (4)

where

V =
ω2

2

(
ξ2 + η2

)
+

µ

R32
+

µ4

R34
− K

2

(
(ξ + µ)

2
+ η2

)
+A

µ

2R3
32

Similarly, in the rotating (synodic) system, the equations of motion of m4 in dimensionless

cartesian coordinates are

ξ̈′ − 2ωη̇′ = V ′ξ′ , (5)

η̈′ + 2ωξ̇′ = V ′η′ , (6)

where

V ′ =
ω2

2

(
ξ′2 + η′2

)
+

µ

R42
+

µ3

R43
− K ′

2

(
(ξ′ + µ)

2
+ η′2

)
+A

µ

2R3
42

and

µ3 =
m3

m∗1 +m2
� 1,K ′ =

4

3
πρ1

(
1− ρ1

ρ4

)
.

1. Equilibrium Solutions

The equilibrium solutions of m3 and m4 are given by

Vξ = 0 = Vη ; V ′ξ′ = 0 = V ′η′

i.e. ,

ξ − µ4
(ξ − ξ′)
R3

34

−K (ξ + µ)− µ (ξ − (1− µ))

R3
32

+A

(
3

2
ξ − 3

2
µ

(ξ − (1− µ))

R5
32

)
= 0, (7)

η − µ4
(η − η′)
R3

34

−Kη − µη

R3
32

+A

(
3

2
η − 3

2

µη

R5
32

)
= 0, (8)

and

ξ′ − µ3
(ξ′ − ξ)
R3

43

−K ′ (ξ′ + µ)− µ (ξ′ − (1− µ))

R3
42

+A

(
3

2
ξ′ − 3

2
µ

(ξ′ − (1− µ))

R5
42

)
= 0, (9)

η′ − µ3
(η′ − η)

R3
43

−K ′η′ − µη′

R3
42

+A

(
3

2
η′ − 3

2

µη′

R5
42

)
= 0, (10)

Case I: Collinear Equilibrium Solutions

By inspection, we see that the equations (8) and (10) are satisfied with η = η′ = 0.
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It remains to determine ξ and ξ′ such that the following simplified forms of the Equations

(7) and (9) are satisfied, i.e.

ξ − µ{ξ − (1− µ)}
|ξ − (1− µ)|3 − µ4

(ξ − ξ′)
|ξ − ξ′|3 −K(ξ + µ) +A

[
3

2
ξ − 3

2

µ (ξ − (1− µ))

|ξ − (1− µ) |5
]

= 0 (11)

ξ′ − µ{ξ
′ − (1− µ)}
|ξ′ − (1− µ)|3 − µ3

(ξ′ − ξ)
|ξ′ − ξ|3 −K

′(ξ′ + µ) +A

[
3

2
ξ′ − 3

2

µ (ξ′ − (1− µ))

|ξ′ − (1− µ) |5
]

= 0 (12)

In the Equation (11), when µ4 = 0 and A = 0 and in the Equation(12), when µ3 = 0

and A = 0, (−µ, 0) is the only equilibrium solution of the system ([?]). Now, we apply the

perturbation theory when none of µ3 , µ4 ,A are zero.

We further define

Ω(x, y) =
1

2
(x2 + y2) +

µ

[{x− (1− µ)}2 + y2]
1
2

− K

2
[(x+ µ)2 + y2],

and

Ω′(x, y) =
1

2
(x2 + y2) +

µ

[{x− (1− µ)}2 + y2]
1
2

− K ′

2
[(x+ µ)2 + y2].

The solutions ξ and ξ′ of (11) and (12) may be expressed as power series in small parameters

ε3 and ε4 such that

ξ = −µ+

∞∑

j=1

a1jε
j
4, ξ′ = −µ+

∞∑

j=1

a2jε
j
3. (13)

where

εi =
µi

(Λµ3 + µ4)
2
3

� 1, (i = 3, 4)

and

Λ =
l1
l2

(14)

l1 = Ω(3)
xx +A

(
3

2
+ 6µ

)
, l2 = Ω(′4)

xx +A

(
3

2
+ 6µ

)
.

The upper suffix (3) and (4) denote the evaluation of the derivatives at the equilibrium

solution (−µ, 0) for m3 and m4 respectively.

The Equations (7), (8), (9), and (10) can be written as

Ωx(ξ, η)− µ4
(ξ − ξ′)
R3

34

+A

[
3

2
ξ − 3

2

µ (ξ − (1− µ))

R5
32

]
= 0, (15)

Ωy(ξ, η)− µ4
(η − η′)
R3

34

+A

[
3

2
η − 3

2

µη

R5
32

]
= 0, (16)

Ω′x(ξ′, η′)− µ3
(ξ′ − ξ)
R3

43

+A

[
3

2
ξ′ − 3

2

µ (ξ′ − (1− µ))

R5
42

]
= 0, (17)

Ω′y(ξ′, η′)− µ3
(η′ − η)

R3
43

+A

[
3

2
η′ − 3

2

µη′

R5
42

]
= 0. (18)
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When η = η′ = 0, the equilibrium solutions are given by the Equations

Ωx(ξ, 0)− µ4
(ξ − ξ′)
|ξ − ξ′|3 +A

[
3

2
ξ − 3

2

µ (ξ − (1− µ))

|ξ − (1− µ) |5
]

= 0,

Ω′x(ξ′, 0)− µ3
(ξ′ − ξ)
|ξ′ − ξ|3 +A

[
3

2
ξ′ − 3

2

µ (ξ′ − (1− µ))

|ξ′ − (1− µ) |5
]

= 0.

Solving the two equations for ξ ,ξ′ we get,

ξ = −µ± µ4

[(µ4 + Λµ3)2
(
(1−K + 2µ) + 3

2A+ 6µA
)
]
1
3

and

ξ′ = −µ∓ µ3Λ

[(µ4 + Λµ3)2
(
(1−K + 2µ) + 3

2A+ 6µA
)
]
1
3

In the case when ρ3 = ρ4, we have

(i). K = K ′

(ii). Ω(x, y) = Ω′(x, y)

(iii). Ω
(3)
xx = 1−K + 2µ = 1−K ′ + 2µ = Ω

′(4)
xx

(iv). Λ = 1

Therefore, ξ and ξ′ become

ξ = −µ± µ4

[(µ3 + µ4)2(1−K + 2µ+ 3
2A+ 6µA)]

1
3

,

and

ξ′ = −µ∓ µ3

[(µ3 + µ4)2(1−K + 2µ+ 3
2A+ 6µA)]

1
3

.

Hence there are two equilibrium solutions of the system.

Case II: Non Collinear Equilibrium Solutions

In this case, we assume η 6= 0, η′ 6= 0.

When µ4 = 0 and A = 0, the equilibrium solutions of m3 lie on a circle with centre (1−µ, 0)

and radius one, only when K = 1 − µ, provided they lie within the spherical shell. Again

when µ3 = 0 and A = 0, equilibrium solutions of m4 lie on a circle with centre (1−µ, 0) and

radius one, only when K ′ = 1 − µ, provided they lie within the spherical shell([?]). Now,

we apply the perturbation theory when none of µ3 , µ4 ,A are zero.

The equilibrium solutions of m3 and m4 are given by the Equations (7), (8), (9), and (10).

The solutions of these equations may be expressed as power series in small parameters ε3
and ε4 such that

ξ = x′ +
∞∑

j=1

a1jε
j
4, η = y′ +

∞∑

j=1

b1jε
j
4, (19)

ξ′ = x′′ +
∞∑

j=1

a2jε
j
3, η′ = y′′ +

∞∑

j=1

b2jε
j
3, (20)
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where

εi =
µi

(Λµ3 + µ4)
2
3

� 1, (i = 3, 4) (21)

and

Λ =
l1
l2
,

l1 = Ω(3)
xx +A

(
3

2
+ 6µ

)
, l2 = Ω

′(4)
xx +A

(
3

2
+ 6µ

)
.

The upper suffix (3) and (4) denote the evaluation of the derivatives at the equilibrium so-

lution (x′, y′) and (x′′, y′′) for m3 and m4 respectively, provided they lie within the spherical

shell.

Here (x′, y′) is any point lying on the circle

{(1− µ− x)2 + y2} = 1

therefore, x′ = 1− µ− cos(φ), y′ = sin(φ)

where

180◦ −Θ ≤ φ ≤ 180◦ + Θ and Θ = sin−1
d

2

The portion of the circle with radius one which intersects m∗1 constitute the equilibrium

solution of m3. The highlighted portion in Figure 2 depicts this clearly.

Also, (x′′, y′′) is any point lying on the circle

{(1− µ− x)2 + y2} = 1

therefore, x′′ = 1− µ− cos(φ′), y′′ = sin(φ′), where φ 6= φ′ and

180◦ −Θ ≤ φ′ ≤ 180◦ + Θ

The non-collinear equilibrium solutions exist only when K = 1 − µ = K ′ and these inturn

also imply ρ3 = ρ4. The Equations (7), (8), (9), and (10) can be written as (15), (16), (17),

and (18).

To o(ε), where ε = max(ε3, ε4) and using the values of ξ, η, ξ′, η′ from the Equations (19)

and (20) and applying Taylor’s series, the first term of the Equation (15) is

Ωx(ξ, η) = a11ε4Ω(3)
xx + b11ε4Ω(3)

xy (22)

We determine Ωy(ξ, η), Ω′x(ξ′, η′), and Ω′y(ξ′, η′).
Since µ3, µ4, ε3, ε4 are very small, ignoring the higher order terms and using the Equations

(19) and (20), the position of m3 and m4 are given by

ξ = x′ + a11ε4 = X1 (say) . (23)

η = y′ + b11ε4 = Y1 (say) . (24)

Also,

ξ′ = x′′ + a21ε3 = X2 (say) . (25)

η′ = y′′ + b21ε3 = Y2 (say) . (26)
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We may note that

Ω(3)
xx = 3µ

(
Cos2 (φ)

)

Ω(3)
xy = −3µCos (φ)Sin (φ)

Ω(3)
yy = 1− µ+ 3µ

(
Sin2 (φ)

)

Ω
′(4)
xx = 3µ

(
Cos2 (φ′)

)

Ω
′(4)
xy = −3µCos (φ′)Sin (φ′)

Ω
′(4)
yy = 1− µ+ 3µ

(
Sin2 (φ′)

)

Equations (23), (24), (25) and (26) give approximate locations of the non-collinear equilib-

rium solutions. The equilibrium solutions of m3 and m4 is a perturbed curve of a circle. The

portion of the curve which lies within the spherical shell constitute the set of equilibrium

solutions. For the non-collinear equilibrium solutions to exist ρ3 must be equal to ρ4. It

may be noted that there are an infinite number of non-collinear equilibrium solutions as φ,

φ′, φ 6= φ′ lie between the specified range. The positions of the non-collinear equilibrium

solutions in this case are illustrated in Figure 3.
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2. Stability of the Collinear Equilibrium Solutions

The variational equations for m3 are

α̈− 2ωβ̇ = αV
(3)
ξξ + βV

(3)
ξη , β̈ + 2ωα̇ = αV

(3)
ξη + βV (3)

ηη . (27)

Now

V
(3)
ξξ = ω2 −K − 2µ (1 + 3a11ε4) +

2µ4

µ4 + Λµ3
(1−K + 2µ)

+A

(
3

2
− 6µ (1 + 5a11ε4)

)
(28)

V
(3)
ξη = 0 (29)

V (3)
ηη = ω2 −K + µ (1 + 3a11ε4)− µ4

µ4 + Λµ3
(1−K + 2µ)

+A

(
3

2
+

3

2
µ (1 + 5a11ε4)

)
(30)

The variational equations become

α̈− 2ωβ̇ = α

[
(ω2 −K − 2A1 + 2A2) +A

(
3

2
− 6A3

)]
(31)

β̈ + 2ωα̇ = β

[
(ω2 −K +A1 −A2) +A

(
3

2
+

3

2
A3

)]
(32)

where

A1 = µ (1 + 3a11ε4)

A2 =
2µ4

µ4 + Λµ3
(1−K + 2µ)

A3 = µ (1 + 5a11ε4)

The characteristic equation of m3

λ4 + p1λ
2 + p2 = 0 (33)

where

p1 = −
(

2ω2 − 2K −A1 +A2 +A

(
3− 9

2
A3

)
− 4ω2

)

p2 =

[
(ω2 −K − 2A1 + 2A2) +A

(
3

2
− 6A3

)]

[(
ω2 −K +A1 −A2 +A

(
3

2
+

3

2
A3

))]
(34)

This is a quadratic equation in λ2. Its roots are

λ2 =
(2ω2 − 2K −A1 +A2 +A

(
3− 9

2A3

)
− 4ω2)±

√
∆

2
(35)

where

∆ =
√
p21 − 4p2 (36)
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The equilibrium point is stable if p1 > 0,p2 > 0, ∆ > 0.

Stability of Non Collinear Equilibrium Solutions The characteristic equation of

m3 (and similrly of m4 ) is

λ4 + p1λ
2 + p2 = 0 (37)

where

p1 = −
(
V

(3)
ξξ + V (3)

ηη − 4ω2
)

(38)

p2 =

(
V

(3)
ξξ V

(3)
ηη −

(
V

(3)
ξη

)2)
. (39)

where the derivatives can be calculated as done in the previous case. The equilibrium point

is stable if p1 > 0,p2 > 0, ∆ > 0 where ∆ =
√
p21 − 4p2.

Conclusion

Celestial bodies in general are not spherical, rather they are oblate or axis symmetric

bodies. It is therefore essential that we concentrate on primaries which are axis symmetric

bodies and preferably on oblate bodies. This paper is an extension to our paper [?]. In

that paper, we had taken m2 as mass point while in this paper we have considered m2 as

an oblate body. The non-collinear equilibrium solutions exist only when ρ3 = ρ4. There

exist an infinite number of non collinear equilibrium solutions of the system, provided they

lie inside the spherical shell (Figure 3). This problem has application in the motion of

submarines in the earth moon setup. It observe that the problem of 2 + 2 bodies can be

extended to 2 + n bodies taking ′n′ infinitesimal masses within the ellipsoid. Earth is the

only celestial body we know of which has fluid and the test particles within the fluid are

considered as the submarines. In the solar or the extra solar system,we donot know of any

other celestial body having liquid inside it. Our entire work is applicable in solar or extra

solar system when and if such a system is discovered.
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A great deal of learning happens beyond the formal coursework. This section hence, aims 
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and adds interests to the course and provides an experience of transformative learning. 





FERMAT’S LAST THEOREM

ANIKA JAIN

Abstract. Fermat‘s Last Theorem is the most notorious problem in the history of

mathematics and surrounding it is one of the greatest stories imaginable. Pierre de

Fermat created the Last Theorem while studying a page of Arithmetica which discussed

various aspects of Pythagoras‘ Theorem. Fermat‘s Last Theorem was interesting yet

challenging as it looked simple but was much harder than one can imagine to solve. The

more that mathematicians tried, the more they failed, and the more desirable a solution

became. The Last Theorem was solved in 1993 by Andrew Wiles which had defeated

mathematicians for more than 300 years.

Introduction

The beauty of Fermat’s Last Theorem lies in the fact that the problem itself is supremely

simple to understand. It is a puzzle that is stated in terms familiar to every school child.

However, the mathematics involved in its proof is some of the toughest in the world. Pierre

De Fermat was born in 1601 in France. He was a high ranking judge. Though he was an

amateur mathematician yet he was one of the most brilliant mathematicians who contirbuted

to three significant areas of mathematics i.e. Calculus, Probability Theory and Number

Theory.

There is no record of Fermat being inspired by a mathematical tutor, instead it was a

copy of the Arithmetica written by Diophatus of Alexandria which became his tutor. He

was the one who found the unique property of 26 which was the only number in the infinity

of numbers to be sandwiched between a square and a cube i.e. 52 < 26 < 33

Birth of the Riddle

One day, he was studying a particular page of Arithmetica which discussed the Pythago-

ras’ Theorem which has infintely many solutions. Fermat must have been bored with this

equation as it was too easy for him so he considered a slightly mutated version of the equa-

tion: x3 + y3 = z3. He came to the conclusion that among the infinity of numbers there

were none that fitted this new equation. Fermat claimed that the equation xn + yn = zn

had no non trivial whole number solutions for n greater than 2. After the first marginal

note that outlined the theory the mischievious genius jotted down an additional comment

which would haunt generations of mathematicians.

“I have a truly marvellous demonstration of this proposition

which this margin is too narrow to contain.”
41
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Figure 1

Then eventually Fermat died but his son Clement Sameul spent 5 years collecting his father‘s

letters and notes and published his annotations in a special edition of the arithemetica

called ”Diophantus‘ Arithemetica containing observaton by P. De Fermat. Fermat’s 48

observations reached the wider community, every single observation was eventually proved

except Fermat’s Last Theorem and since it was the last observation to be proved hence its

name.

Developments to the solution

Leonhard Euler was one of the greatest mathematicians of the eighteenth century from

Basle. He is famous for solving the question of 7 bridges of Konigsberg. He became frustrated

by Fermat’s Last Theorem and even asked a friend Clairaut to go back to Fermat’s house

to look for any scrap of paper that might give him a clue of Fermat’s solution. Eventually

he found a clue hidden in Fermat’s jottings where he cryptically described the proof for the

case n=4 using the method of Infinite Descent. This was the stepping stone for Euler and

he thus proved Fermats Last Theorem for the case n=3.

Sophie Germain, a young French woman revolutionised the study of Fermat‘s Last Theo-

rem. She worked on the Last Theorem for several years and eventually made a breakthrough.

She adopted a new strategy to approach the problem. Her immediate goal was not to prove

a particular case but to say something about many cases at once. Her calculation focused

on particular prime p such that 2p + 1 is also prime. Soon Peter Gustav Lejeune Dirichlet

and Adrien-Marie Legendre proved the case n=5 based on Germain‘s observations. Few

years later, Gabriel Lame proved Fermat‘s Last Theorem for the case n=7.
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Elliptic curves and Modular Forms

Elliptic Curves are equations of the form: y2 = x3 + ax2 + bx + c where a, b, c are any

whole numbers. The challenge is to find out if they have whole number solutions and, if

so, how many. With an infinite quantity of whole numbers to investigate, giving a complete

list of solutions to a particular equation is an impossible task. A simpler task is to look

for solutions in a finite number space called clock arithmetic which involves truncating the

line and looping it back on itself to form a number ring as opposed to a number line. For

example, consider a 5- clock arithmetic where the number line has been truncated at 5 and

looped back at 0. Consider the equation :

x3 − x2 = y2 + y

The solutions are:

x = 0, y = 0

x = 0, y = 4

x = 1, y = 0

x = 1, y = 4

Although some of the solutions would not be valid in normal arithmetic, in 5 clock

arithmetic they are acceptable. Mathematicians list the number of solutions in each clock

arithmetic and call it the L- series for the elliptic equation.

Yutaka Taniyama and Goro Shimura were Japanese students studying at the University

of Tokyo. Both were fascinated by an unfashionable topic called Modular Forms. It is a

mathematical object that is symmetrical in an infinite number of ways which live in the

upper half- plane of a four dimensional complex plane (xr, xi, yr, yi). The modular forms

which live in hyperbolic space come in various shapes and sizes but each one is built from the

same basic ingredient. The ingredients of modular form are labelled from one to infinity (M1,

M2 ..). Every modular form has a modular series called the M - series, a list of ingredients

and their quantity. The modular forms studied by Taniyama and Shimura can be shifted,

switched, swapped, reflected and rotated in an infinite number of ways and still they remain

unchanged.

They claimed that if elliptic curves over the field of rational numbers are related to

modular forms through their respective L- series and M - series, the series were identical.

This came to be known as the Taniyama-Shimura conjecture. It suggested deep fundamental

relationship between two objects which came from opposite ends of mathematics.

During the autumn of 1984, a select group of number theorists gathered for a symposium

in Oberwolfach, Germany where Gerhard Frey, one of the speakers made a remarkable claim

that if anyone could prove the Taniyama-Shimura Conjecture, they would immediately prove

Fermat‘s Last Theorem. Fermat’s Last Theorem claims that there are no whole number

solutions to the equation xn + yn = zn, but Frey explored what would happen if it is false,

i.e. that there is at least one solution. He labelled the unknown numbers with the letters

A, B and C:

AN + BN = CN
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Frey then proceeded to ’rearrange’ the equation. With a daft series of complicated manoeu-

vres, Frey fashioned Fermat‘s equation, with the hypothetical solution into a form similar

to elliptic equations:

y2 = x3 + (ANBN )x2 −ANBN

It is easier to appreciate the elliptical nature of Frey’s equation if we let

a = AN −BN , b = ANBN , c = 0

Frey pointed out to his audience that this elliptic equation, created from the solution of

Fermat’s Last Theorem was so weird that the repercussions of its existence would be dev-

astating for the Taniyama-Shimura conjecture. In fact it was so strange that it would be

seemingly impossible for it to be related to a modular form. Ken Ribet, a professor of

University of California at Berkeley, proved the Frey’s claim. His colleague Barry Mazur

was visiting Berkeley to attend the International Congress of Mathematicians. Ribet began

explaining him a tentative strategy which he had been exploring when he realised that all

he had to do was add some gamma-zero of (M) structure and just run through his argu-

ment. Thus, Ken Ribet with the help of Barry Mazur proved that the Taniyama-Shimura

conjecture implies Fermat’s Last Theorem.

“I think I’ll stop here”

Andrew Wiles at the age of ten was fascinated by mathematics. As a child he loved

to solve mathematical problems and riddles. In 1975 Andrew Wiles began his career as a

graduate student at Cambridge University. He studied elliptic curves for his Ph.D. Thesis on

the suggestion of John Coates, his mentor. For Andrew Wiles anything leading to Fermat’s

Last Theorem was worth pursuing. Coincidently whatever he did as a graduate student or

professor developed ideas to prove the Taniyama-Shimura Conjecture. By fate, he had all

the equipments to begin attack on the conjecture. For the next seven years he worked in

complete secrecy trying to prove the conjecture.

After a year of contemplation, Wiles decided to adopt the strategy of induction to deal

with infinity of numbers. He had to knock over a million dominoes. So instead he toppled

the first domino and tried to show that it would lead to a domino-toppling effect. To prove

the Taniyama-Shimura conjecture, mathematicians had to show that every one of the infinte

number of elliptic equations could be paired with a modular form. Originally they tried to

show that the whole E- series of one elliptic equation could be matched with the whole M -

series of one modular form and then move onto the other. Instead of trying to match all

elements of one E- series and M - series, Wiles tried to match one element of all E- series and

M - series.He tried to show that the first gene in every E- series could be matched with the

first gene of every M - series. Wiles used Galois’s work on group theory as the foundation

for his proof of the Taniyama-Shimura conjecture. A handful of solutions from every elliptic

equation could be used to form a group.

For the next three years he worked on the Iwasawa theory but by the summer of 1991,

he felt he had lost the battle to adapt it. Then he used the Kolyvagin-Flach method to

extend his argument from the first piece of the elliptic equation to all pieces of the elliptic
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equation. Then around early January of 1993, he decided to confide in Nick Katz. Professor

Nick Katz also worked in Princeton University’s Mathematical Department and had known

Wiles for several years. They decided that the best strategy would be to announce a series

of lectures open to the department’s graduate students. Wiles would give the course that

would effectively cover the part of the proof that needed to be checked while Katz would

be part of the audience along wth the graduates who had no idea of this. Once the lecture

series was over Wiles devoted all his efforts to completing the proof.

After seven years of single-minded effort, Wiles had completed the proof of the Taniyama-

Shimura conjecture and as a consequence had fulfilled his dream of proving Fermat’s Last

Theorem. On 23 June 1993, Andrew Wiles gave the third lecture at Isaac Newton Institute,

Cambridge where he announced the proof. There was a typical dignified silence while he

read out the proof and then wrote up the statement of Fermat’s Last Theorem. He said, ”I

think I’ll stop here”, and then there as sustained silence. It was a historical event.

While the media circus continued and while mathematicians made the most of the spot-

light, the serious work of checking was underway. Wiles submitted his manuscipt to the

jounal Inventiones Mathematicae, whereupon its editor Barry Mazur began the process of

selecting the referees. Unusually, the committee consisted six members. To simplify matters

the 200-page proof was divided into six sections and each of the referees took responsibility

for one of these chapters.

Chapter 3 was the responibility of Nick Katz, who had already examined that part of

Wiles‘ proof earlier in the year. The proof was a gigantic argument, intricately constructed

from hundreds of mathematical calculations glued together by thousand of logical links. One

aspect of the argument did not make sense to Nick Katz. Sometime around 23 August he

e-mailed Andrew who inturn sent him a fax explaining it but still Katz was not satisfied. He

pointed out to an error in a crucial argument involving the Kolyvagin- Flach method which

was supposed to extend the proof from the first element of all elliptic equations and modular

forms to cover all the elements, providing the toppling mechanism from one domino to the

next. The error was so abstract that it couldn’t be described in simple works. The error

did not necessarily mean that Wiles’s work was beyond salvation, but it did mean that he

would have to strengthen the argument.

He couldn’t fix the mistake and hence went back to working in complete isolation. At

this stage only the referees and Wiles knew about this error and things were going on in

secrecy. Wiles himself didn’t tell anything in order to buy some extra time. Months past

and people began to wonder where the proof was that they were told about. Rumours of an

error began to circulate. Eventually Wiles realised that he could not maintain his silence

forever. After the autumn of dismal failure, he sent emails to the mathematical society

telling them about an error in the proof.

Few were convinced by Wiles’s optimism. Almost six months passed without the error

being corrected. He decided to invite Richard Taylor, a Cambridge lecturer, to Princeton to

work alongside him. Then in the spring of 1994, when it looked things could not get worse,

an e-mail hit the computer screens stating, ’Noam Elkies has announced a counter example,

so that Fermats Last Theorem is not true after all! The solution to Fermat that he constructs



46 ANIKA JAIN

involves an incredibly larger exponent (larger than 1020), but it is constructive. Noam Elkies

back in 1988 had found a counter-example to Euler’s conjecture, thereby proving it false.

This was a tragic blow for Wiles- the reason he could not fix the proof was that the so called

error as a direct result of the falsity of the Last Theorem. After one or to days of turmoil,

mathematicians realised that the e-mail was dated 1 April. The e-mail was a mischievous

hoax served as a suitable lesson for the Fermat rumour-mongers, and for a while the Last

Theorem, Wiles, Taylor and the damaged proof were at peace.

They worked all summer but made no progress. Taylor had to go back to Cambridge to

resume work so they kept September as a deadline. On 19 September, Wiles had a moment

of revelation. During the seven years he had worked on two methods. Independently both

the techniques were inadequate but the amalgamation of the Kolyvagin-Flach method and

Iwasawa theory solved everything. Two papers consisting of 130 pages were published in

Annals of Mathematics (May 1995). Thus Fermat’s Last Theorem had been solved after

358 years.
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ROAD NETWORK ANALYSIS: A SHORTEST PATH ALGORITHM

APPLICATION

SHAMBHAVI GUPTA

Abstract. A geographic information system (GIS) is a computer-based tool which can

create, manipulate, analyze, store and display spatial information of objects and hence

useful in transportation management. The shortest path problem is one of the classical

problems of graph theory, which is the problem of finding a path between the source and

the destination/target (analogous to vertices of graph) to minimize total cost or distance

or time (analogous to edge-weight) between them. This paper compares Dijkstra algo-

rithm and Bellman-Ford algorithm to find the shortest path. The purpose of the paper

is to select one best algorithm from these two algorithms after conducting comparative

analysis.

INTRODUCTION

Description. In graph theory, the shortest path problem is the problem of finding a path

between two vertices (or nodes) in a graph such that the sum of the weights of its constituent

edges is minimized. In terms of graph theory, let ei,j be the edge from vertex vi to vj . Given

a directed graph G=(V,E) and a real-valued weight function, f : E → R, the goal is to find

the shortest path from vl to vm, lets say Pl,m = vl → v1 → v2 . . . vk → vm that minimizes

the sum f(el,1) +
∑k−1

i=1 f(ei,i+1) + f(ek,m) ∀vl, vm ∈ V .

Applications. It has many fundamental applications like Internet Routing (e.g. the OSPF

routing algorithm), VLSI Routing, Traffic Information Systems, Robot Motion Planning,

Routing Telephone Calls, Road Network Analysis, avoiding nuclear contamination, destabi-

lizing currency marketone. We will focus on the application of shortest path algorithm on

’Road Network Analysis’.

SHORTEST PATH PROBLEM

A road network can be considered as a positive-weighted digraph. (Self loops, if present,

should be neglected in the graph.) The nodes or vertices represent road junctions (intersec-

tions) and each edge of the graph is associated with a road segment between two junctions.

The weight of an edge may correspond to the length, time needed to transverse or the cost

of the associated road segment.

Problem Definition: Given a graph G = (V,E). Given any pair of vertices s and t, we

would like to find a shortest path from source s to destination t i.e. a path from s to t in

a graph G given by the sequence s, v1, v2 . . . vm, t, such that the total weight of the edges

s→ v1 → v2 . . . vm → t is minimum.
47
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Though there are many shortest path algorithms like Dijkstra’s, Bellman-Ford-Moore,

Floyd-Marshal, Johnson’s etc which can be used to solve the problem, we will focus on the

working of the former two algorithms to solve the problem.

Dijkstra’s Algorithm

Edsger W. Dijkstra,

(1930-2002)

Dijkstra’s algorithm was conceived by computer scientist

Edsger W. Dijkstra in 1956 while working at Mathematical

Center in Amsterdam on a program to demonstrate capabili-

ties of the new computer called ARMAC. After designing the

shortest path algorithm, published in 1959, he implemented

it for ARMAC for slightly simplified transportation map of

64 cities in Netherland (ARMAC was 6-bit computer and

hence could hold 64 cities comfortably). Dijkstra’s original

variant found the shortest path between two nodes (all pairs

shortest path problem), but a more common variant fixes a

single node as the ”source” node and finds shortest paths from the source to all other nodes

in the graph, producing a shortest path tree (single-source shortest path problem) .

Working of algorithm. Let the starting node be called the initial node. Let the distance

of node v be the distance from the initial node to v. Dijkstra’s algorithm will assign some

initial distance values and will try to improve them step by step.

(1) Assign to every node a tentative distance value: set it to zero for our initial node and

to infinity for all other nodes (this doesn’t imply that there is an infinite distance,

but it means that it’s an unvisited node).

(2) Set the initial node as current. Mark all other nodes unvisited. Create a set of all

the unvisited nodes called the unvisited set.

(3) For the current node, consider all of its unvisited neighbors and calculate their

tentative distances. Compare the newly calculated tentative distance to the current

assigned value and assign the smaller one.

(4) When we are done considering all of the neighbors of the current node, mark the

current node as visited and remove it from the unvisited set. A visited node will

never be checked again.

(5) If the destination node has been marked visited (when planning a route between

two specific nodes) or if the smallest tentative distance among the nodes in the

unvisited set is infinity (when planning a complete traversal; occurs when there is

no connection between the initial node and remaining unvisited nodes), then stop.

The algorithm is finished.

(6) Select the unvisited node that is marked with the smallest tentative distance, and

set it as the new ”current node” then go back to step 3.

Running Time. Bounds of the running time of Dijkstra’s algorithm will be expressed

using big-O notation. Dijkstra’s algorithm can be implemented more efficiently by storing

the graph in the form of adjacency lists and using a self-balancing binary search tree, binary

heap, pairing heap, or Fibonacci heap (by Fredman & Tarjan, 1984) or Brodal queues in a
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Figure 1. Djikstra’s Algorithm using Simple linked list or array

and using Minimum priority queue

priority queue to implement extracting minimum efficiently than storing the vertex set Q

as an ordinary linked list or array in Simple Dijkstra’s algorithm since extract-minimum is

simply a linear search through all vertices in Q. The running time for Simple Dijkstra’s is

O(|E| + |V |2) = O(|V |2) (for sparse graphs, its even fewer).The Dijkstra’s algorithm using

minimum priority queue takes O(|E| · log(|V |) in case of self-balancing binary search tree

or ordinary binary heap (for connected graphs) and takes O(|E| + |V | · log(|V |) in case of

the Fibonacci heap. The average case time complexity is lower than the worst-case (assume

edge-costs are drawn independently from common probability distribution) . Since the

expected number of decrease-key operations, in this case is bounded by O

(
|V | · log

( |E|
|V |

))
,

giving total running time of O

(
|E|+ |V | · log

( |E|
|V |

))
.

Bellman-Ford-Moore Algorithm

Bellman-Ford-Moore

The Bellman-Ford algorithm is Single Source

Shortest Path Algorithm for weighted digraph.

The algorithm is usually named after two of its de-

velopers, Richard Bellman and Lester Ford Jr., who

published it in 1958 and 1956 respectively. However

Edward F. Moore also published the same algorithm

in 1957, and hence, sometimes called the Bellman-

Ford-Moore algorithm.

Working of Algorithm. The algorithm initializes the distance to the source as 0 and all

other nodes to∞. Then for all edges, if the distance to the destination can be shortened by

taking the edge, the distance is updated to the new lower value. At each iteration that the

edges are scanned, the algorithm finds all shortest paths of at most length i edges. Since

the longest possible path without a cycle can be |V | − 1 edges, the edges must be scanned

|V | − 1 times to ensure the shortest path has been found for all nodes. A final scan of all

the edges is performed and if any distance is updated, then a path of length |V | edges has
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been found which can only occur if at least one negative cycle exists in the graph and return

it’s value (if present) and also return shortest path. This algorithm finds shortest path in

bottom up manner.

Figure 2. Bellman-Ford Algorithm pseudo-code

Running Time. Bellman-Ford Algorithm runs in O(|V | · |E|) time.

COMPARISON OF Dijkstra AND Bellman-Ford ALGORITHM

Similarities.

• Aim: Both algorithms are used to find the shortest path of a network where the

value of the shortest path may vary according to the situation of the (road) network

by solving cost and length problems.

• Principle of relaxation: Both algorithms work on relaxation principle which is

an approximation to the correct distance found by gradually replacing it by more

accurate values until the optimum solution is reached i.e. approximate distance to

each vertex is always an overestimate of the true distance, and is replaced by the

minimum of its old value and getting the length of a newly found path.

Dissimilarities.

• Time Complexity: The Simple Dijkstra algorithm takes O(|V |2) time (even lesser

in algorithm with minimum priority queue) whereas by Bellman Ford algorithm is

O(|V |.|E|), and hence had more running time than Dijkstra’s.

• Space Complexity: Implementing Q using priority queue with at most |E| edges

in the heap, the space complexity of Dijkstra algorithm is O(|V | + |E|) and of

Bellman Ford algorithm is O(|V |).So Bellman Ford algorithm takes more space

than Dijkstra’s and hence not suggested for larger networks (specifically for GIS,

which involves analysis of lots of data) and for dense networks.
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• Negative weighted and negative cycled graphs: Unlike Dijkstra algorithm,

Bellman-Ford algorithm works in negative weighted graph and also do not detect

negative cycle (but in GIS, distance is in positive form, hence not an added advan-

tage) .

• Count to infinity: In Bellman Ford algorithm if link or node failures render a node

unreachable from some set of other nodes, those nodes may spend forever gradually

increasing their estimates of the distance to it, and in the meantime there may be

routing loops. This slowly propagates through the network until it reaches infinity

(in which case the algorithm corrects itself, due to the “Relax property” of Bellman

Ford).

• Update of information: Unlike Dijkstra Algorithm, in Bellman Ford algorithm

changes in network topology are not reflected quickly, since updates are spread

node-by-node. It does not scale well, but in GIS, for finding shortest path, we have

to update the traffic information quickly.

• Difference of working of relaxation principle: Dijkstra algorithm greedily

selects the minimum-weight node that has not yet been processed, and performs this

relaxation process on all of its outgoing edges whereas the Bellman-Ford algorithm

simply relaxes all the edges in |V | − 1 times. In each of these repetitions, the

number of vertices with correctly calculated distances grows gradually to all the

vertices. This method allows the Bellman-Ford algorithm to be applied to a wider

class of inputs than Dijkstra.

• Versatility: The Djikstra algorithm uses a priority queue data structure which can

be implemented in a number of different ways like binary heap or fibonacci heap.The

latter is smaller for fairly dense graphs (i.e. graphs where V = |E|).
• Implementation: Although the proof of correctness is a bit technical, the Bellman-

Ford algorithm is easy to implement and doesn’t use any complicated data structures

whereas Fibonacci heaps are difficult to implement and have poor constant factors.

CONCLUSION

After comparative analysis of both the algorithms, it can be concluded that Di-

jkstra’s algorithm is more efficient, faster and updates information quickly than

Bellman Ford algorithm for road network analysis. It also works better and faster

in larger network. Hence Dijkstra’s algorithm is preferred over Bellman-Ford algo-

rithm for road network analysis in GIS technology and is widely used in real time

application in GIS.
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PERTURBATION TECHNIQUES

RUCHIKA SEHGAL

Abstract. We come across various equations arising from mathematical models which

cannot be solved exactly. Thus we must resort to approximate and numerical methods.

The main emphasis of the paper is to solve various differential and polynomial equations

which have been perturbed due to the presence of a small parameter say 0<ε < < 1. This

paper will focus on regular and singular perturbation techniques to obtain approximate

solution of such problems.

Introduction

Consider a problem:

P ε(x) = 0 (1)

depending on a small, real-valued parameter ε that simplifes in some way when ε (for

example, it is linear or exactly solvable). The aim of perturbation theory is to determine

the behavior of the solution x = xε of (1) as ε → 0.

In this paper, we will discuss two types of perturbations: regular and singular perturba-

tion.

Regular Perturbation

A regular perturbation problem is one for which the perturbed problem for small, nonzero

values of ε is qualitatively the same as the unperturbed problem for ε= 0. One typically

obtains a convergent expansion of the solution with respect to ε, consisting of the unper-

turbed solution and higher order corrections. The basis of regular perturbation method is

to assume a solution of the problem in terms of a power series in ε of the form

y0(t) + εy1(t) + ε2y2(t) + ....

The simplest problem which can be addressed by regular perturbation theory is that of

finding the roots of polynomials.

Example. Consider the following cubic equation:

x3 − x+ ε = 0, 0 < ε << 1 (2)

When ε → 0 in the above equation,we obtain 0,±1 as the solution.

For regular perturbation, we consider x as a taylor-like expansion in the parameter ε

x = x0 + x1ε+ x2ε
2 + x3ε

3.....
53
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Substituting this is the cubic equation and collecting terms in power of ε, we get:

(x30 − x0) + (3x20x1 − x1 + 1)ε+ (3x0x2 − x2 + 3x0x
2
1)ε2 + .... = 0

This gives

x0 = 0,±1, x1 =
1

1− 3x20
Thus the corresponding solutions of the equation (2) are:

x = ε+O(ε2)

and,

x = ±1− 1

2
ε+O(ε2)

Note that as ε=0 in the above solutions, we get x=0,±1, which coincided with the exact

solutions of cubic eqaution when ε=0

Now we discuss an application of the regular perturbation technique.

Motion in a Nonlinear Resistive Medium:

Consider a body of mass m with initial velocity V0 moves in a medium that offers a

resistive force of maginitude av-bv2 where v=v(τ) is the velocity of the object as a function

of time τ and a and b are positive constants b<<a . Thus we see that since b <<a, the non

linear part (v2) of the force is assumed be small as compared to the linear part (v).

By Newton’s second law, the equation of motion for the system is :

m
dv

dτ
= −av + bv2, v(0) = V0 (3)

Now, to solve this equation using regular perturbation we convert equation (3) into dimen-

sionless variable. Let

y =
v

V0
, t =

τ

(m/a)

Thus we have
dy

dt
=

1

V0

dv

dt
=

1

V0

dv

dτ

dτ

dt
=

m

aV0

dv

dτ

Substituting this in equation (3), we get:

dv

dt
= −y + εy2, t > 0, y(0) = 1 (4)

where

ε =
bV0
a

Note that ε <<1 since b<<a

Equation (4) is a slightly perturbed form of the linear equation

dy

dt
= −y, y(0) = 1

which is easily solved by

y = exp(−t) (5)
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Now we will check if this is a good approximation to the solution of (4) by regular pertur-

bation

Let

y = y0(t) + y1(t)ε+ y2(t)ε2 + y3(t)ε3..... (6)

We determine y0,y1,y2,... by substituting (6) in (4),

The differential equation becomes

dy0
dt

+ ε
dy1
dt

+ ε2
dy2
dt

+ ... = −(y0 + εy1 + ε2y2 + ...) + ε(y0 + εy1 + ε2y2 + ....)2

By comparing the coefficients on both sides we get:

dy0
dt

= −y0,

dy1
dt

= −y1 + y20 ,

dy2
dt

= −y2 + 2y0y1, .....

Since y(0)=1, we have

y0(0) + εy1(0) + ε2y2(0) + ... = 1

i.e

y0(0) = 1, y1(0) = y2(0)... = 0

The above differential equations can be solved exactly:

y0 = e−t

y1 = e−t − e−2t

y2 = e−t − 2e−t + e−3t, ..

Thus the perturbation solution is

y = exp(−t) + ε(e−t − e−2t) + ε2(e−t − 2e−2t + e−3t) + ...

Note that as ε → 0 in the above equation, the solution coincides with equation (5).

Now let us consider a situation where regular perturbation fails:

Example. Consider the boundary problem

ε
d2y

dτ2
+ (1 + ε)

dy

dτ
+ y = 0, 0 < t < 1, 0 < ε << 1 y(0) = 0, y(1) = 0 (7)

Let

y = y0(t) + y1(t)ε+ y2(t)ε2 + y3(t)ε3... (8)

Substitution into differential equation (7) gives :

ε

(
d2y0
dτ2

+ ε
d2y1
dτ2

+ ε2
d2y

dτ2
+ ..

)
+ (1 + ε)

(
dy0
dτ

+ ε
dy1
dτ

+ ε2
dy2
dτ

)
+ (y0 + εy1 + ε2y2 + ..) = 0

and equating to zero the coefficients of power of ε gives :

dy0
dτ

+ y0 = 0
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dy1
dτ

+ y1 = −d
2y0
dτ2

− dy0
dτ

....

Since y(0)=0 and y(1)=1, we have:

y0(0) = 0, y0(1) = 1

But a first order differential equation has two conditions to satisfy, thus y0(0)=0 gives

y0(t)=0 and y0(1)=1 gives y0(t)=exp(1-t). This function cannot satisfy the condition at

t=0.Therefore we are at an impasse, regular perturbation has failed at the first step.

There are many instances when regular perturbation fails. Following are the indicators

that suggest its failure:

• When the small parameter say ε is multiplied with the highest derevative of the

differential equation.

• When setting the parameter to zero completely changes the character of the problem.

• When singular points are present in the interval of interest.

• When problem occurs on infinite domains.

In the above boundary value problem the order of the ordinary differential equation

reduces from two to one when ε=0. We solve such problems by singular perturbation

method.

Singular Perturbation

A singular perturbation problem is one for which the perturbed problem is qualitatively

different from the unperturbed problem. We solve the differential equation (7) using the

following steps:

(1) Exact solution:The above differential equation can be solved exactly since is a

linear equation with constant coefficients and the solution is given by:

y(t) =
e−t − e− tε
e−1 − e− 1

ε

Easy calculation shows that

d2y

dt2
(0) = O(ε−2)

and
d2y

dt2
(0.5) = O(1)

Hence ÿ is very large when ε → 0, and therefore the term εÿ is not small as would

be anticipated in a regular perturbation calcululation. This region near the origin

is known as the inner region and the region away from the origin where the term εÿ

is small and may be safely neglected is known as the outer region.

Thus by setting ε=0 in the original problem is a valid approximation provided we

take only the right(t=1) boundary condition. From above we see that y0(t)=exp(1-

t). This approximate solution which is valid in the outer region is known as the

outer approximation.
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Definition: The region near t=0 where y is changing rapidly is called the bound-

ary layer.

(2) Balancing: To analyse the behaviour in the boundary layer, we notice that signif-

icant changes in y takes place in a very short time, which suggests a time scale on

the order of some function of ε, say δ (ε)

Let

t =
τ

δ(ε)
, Y (t) = y(τ)

After substitution, the diffential equation (7) becomes

ε

δ(ε)2
d2Y

dt2
+

(1 + ε)

δ(ε)

dY

dt
+ Y = 0 (9)

Now if the equation has been correctly rescaled for t in the boundary layer, then Y

and its derevatives should be O(1), with the magnitudes of the terms given by the

coefficients:
ε

δ(ε)2
,

1

δ(ε)
,

ε

δ(ε)
, 1

We determine δ(ε) by seeking a two term dominant balance that will allow us to

simplify equation (9). The simplified equation should yield an approximation to

Y(t) that satisfies the boundary condition at t = 0 as well as a matching condition

at the right edge of the boundary layer. If it is to meet both requirements, the

approximation must be the solution to a second-order equation. For this reason,

one of the terms in the dominant balance must be ε
δ(ε)2 . So we have the following

cases:

• ε
δ(ε)2 and 1

δ(ε) are dominant. This yields δ(ε)=O(ε), so that the dominant terms

are O(ε−1) and the others O(1).

• ε
δ(ε)2 and 1 are dominant. Thus δ(ε)=O(

√
ε) so that the dominant terms are

O(1) and the neglible ones O( 1√
ε
). Clearly (b) won’t work.

• ε
δ(ε)2 and ε

δ(ε) are dominant. Thus δ(ε)= O(1), which gives dominant terms of

O(ε) and negligible ones of O(1). This clearly won’t work either.

(3) Inner approximation: Since only the first part above is possible we take δ(ε)=ε.

Substituting this in (9) we get

d2Y

dt2
+
dY

dt
+ ε

dY

dt
+ εY = 0 Y (0) = 0 (10)

Since the scaling is now assumed to be correct, we may resort to regular pertur-

bation. So let

Y = Y0(t) + Y1(t)ε+ Y2(t)ε2 + Y3(t)ε3... (11)

and substitution of (11) in (10) gives:

(
d2Y0
dt2

+
d2Y1
dt2

ε+
d2Y2
dt2

ε2 + ...) + (1 + ε)(
dY0
dt

+
dY1
dt

ε+ ..) + ε(Y0 + Y1ε+ ...)
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This gives the leading order problem

Ÿ0+Ẏ0=0 for t=O(1) , Y0(0)=0

The solution of the above system is:

Y0(t)=A(1-exp(−t))
Thus the inner approximation is given by: yi(τ)=A(1-exp(−τε ))

(4) Matching: In order to find the constant A, it seems reasonable that the inner

and outer expansions should agree to some order in an overlap domain that is

intermediate between the boundary layer and outer region. If t=O(ε), then t is in

the boundary layer and if t=O(1), then t is in the outer region; therefore, this overlap

domain could be characterized as values of t for which t=O(
√
ε), for example,since

orderwise
√
ε is between ε and 1. This is because

√
ε goes to zero slower than ε does.

This intermediate scale alows the introduction of a new scaled independent variable

η in the overlap domain defined by:

η =
τ√
ε

For matching we require that the inner approximation written in terms of the

intermediate variable η should agree in the limit as ε → 0+ with the outer approx-

imation written in terms of the intermediate variable. In symbols for matching we

require that for fixed η

lim
ε→0+

y0(
√
εη) = lim

ε→0+
yi(
√
εη)

In our problem

lim
ε→0+

y0(
√
εη) = lim

ε→0+
exp(1−√εη) = e

and

lim
ε→0+

yi(
√
εη) = lim

ε→0+
A
{

1− exp(
−η√
ε

)
}

= A

Thus matching requires that A=e and the final inner approximation solution is:

yi(τ)=e(1-e
−τ
ε ) for τ=O(ε)

(5) Uniform approximation: To obtain an approximation yu that is valid uniformly

on [0, 1], we add the inner and outer appoximations and subtract their common

limit obtained in matching in the intermediate zone:

yu(τ) = yi(τ) + y0(τ)− e = e1−t − e(1− tε )

Thus yu(τ) provides a uniform approximate solution throughout the interval [0,1].

Substituting yu(τ) into the differential equation gives

ε
d2yu
dτ2

+ (1 + ε)
dyu
dτ

+ yu = 0

So yu(τ) satisfies the differential equation exactly on (0,1). Checking the boundary

conditions

yu(0)=0 and yu(1)=1-e1−
1
ε
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The left boundary condition is satisfied exactly and the right boundary condition

holds for O(εn) for any n>0 since

lim
ε→0+

e1−
1
ε

εn
for any n > 0

We conclude this paper with a general singular perturbation theorem for linear equations

with variable coefficients. The proof of the theorem will follow exactly as we solved the

above example.

Theorem: Let p(t) and q(t) be continuous, with p(t) > 0 on [0, 1]. For the boundary

value problem

ε
d2y

dt2
+ p(t)

dy

dt
+ q(t)y = 0, for0 < t < 1, 0 << 1

y(0) = a, y(1) = b there exists a boundary layer at t = 0 with inner and outer approximations

given respectively by

yi(t) = A+ (a−A) exp (
−p(0)t

ε
)

y0(t) = b exp

∫ 1

t

q(s) ds

p(s)

where

A = b exp

∫ 1

0

q(s) ds

p(s)

conclusion

Perturbation theory first appeared in one of the oldest branches of applied mathematics:

celestial mechanics, the study of motion of the planets. The scope of the perturbation

theory at the present time is much broader than its applications to celestial mechanics but

the main idea is the same. One of the major applications of Perturbation techniques is

the WKB method (named after the scientists Wentzel-Kramers-Brillouin) that applies to

a variety of problems, in particular to linear differential equations. Also it can be used to

determine the large eigenvalues for simple differential operators.
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GOOGLE PAGE RANK ALGORITHM

YASHASWIKA GAUR

Abstract. When Google went online in the 90s, nobody knew that it would become

the most popular search engine in the world. One of the reasons why Google is such an

effective search engine is the PageRank algorithm developed by its founders, Larry Page

and Sergey Brin, when they were graduate students at Stanford University. PageRank

is determined entirely by the link structure of the World Wide Web. It is an automated

process that determines the relevance order of the search items on the web. This helps

Google organise all the data on the internet and provide the most useful pages on the

top, hence making the user’s search easier and productive. This paper will describe the

theorem and how it works.

Introduction

The usefulness of a search engine depends on the relevance of the results it gives. What

makes Google the most widely used search engine is the page rank algorithm behind it,

which quantitatively rates the importance of each page on the web, allowing Google to rank

the pages and therefore present the most relevant and helpful pages first. The idea that

Page Rank brought up was that, the importance of any web page can be judged by looking

at the pages that link to it. If we create a web page i and include a hyperlink to the web

page j, this means that we consider j important and relevant for our topic. If there are a

lot of pages that link to j, this means that the common belief is that page j is important.

If on the other hand, j has only one backlink, but that comes from an authoritative site

k, we say that k transfers its authority to j; in other words, k asserts that j is important.

Whether we talk about popularity or authority, we can iteratively assign a rank to each web

page, based on the ranks of the pages that point to it.

What is page rank?

PageRank is very simply a ’vote’ by all other pages on the web about how important

a particular page is. A link to a page counts as a vote of support. PageRank can be

calculated using a simple iterative algorithm and corresponds to the principal eigenvector

of the normalised link matrix of the web. Also, the importance score or just score refers to

any quantitative rating of the importance of a webpage. This will always be a non negative

number. The core idea in assigning a score to any given web page is that the page’s score is

derived from the links made to that page from other web pages. Suppose the web consists

of n pages, each page indexed by an integer k where k lies between 1 and n. A graph in

which the arrows from a Page A to Page B indicate the link from Page A to Page B is

called a directed graph. We will begin by picturing the web as a directed graph with nodes
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represented by web pages and the edges represented by the links between them. Suppose we

have an internet consisting of four pages to start with, say Page 1, Page 2, Page 3, Page 4.

Let the pages be connected in such a way that Page 1 hyperlinks to pages 2,3 and 4; Page 2

to pages 3 and 4; Page 3 to page 1; page 4 connects to pages 3 and 1. We make the directed

graph with four nodes respectively one for each site. When the page i references j, we add

a directed edge between node i and node j in the graph. For the purpose of calculating

the PageRank, we will ignore navigational links and focus only on the connections between

different websites. For instance, Page 1 links to all the other pages, so Node 1 in the graph

will have outgoing edges to all the other nodes. After analyzing each web page, we get the

graph in Figure 1.

Figure 1

In our model, each page should transfer its importance evenly to the pages that it links

to. Node 3 has three outgoing edges, so it will pass on 1/ 3 of its importance score to each

of the other three nodes. In general if a node has k outgoing edges, it will pass on 1/k of its

importance to each of the nodes that it links to. Hence, we get the graph in Figure 2 after

assigning weights to each edge.

Figure 2

We construct a column stochastic matrix of the above graph, A =




0 0 1 1/2

1/3 0 0 0

1/3 1/2 0 1/2

1/3 1/2 0 0



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Suppose that initially the importance is uniformly distributed among the four nodes, each

getting 1/4 part of the total score of that page . Denote by v, the initial rank vector, having

all entries equal to 1/4. Each incoming link increases the importance of a web page, so we

update the rank of each page by adding to the current value the importance of the incoming

links. This is same as multiplying the matrix A with v. At step 1, the new importance

vector is v1= Av. We thus iterate the process and consequently find v2= A(Av). Numeric

computation gives:

for v=




0.25

0.25

0.25

0.25


 , Av=




0.37

0.08

0.33

0.20


 , A2v=A(Av)




0.43

0.12

0.27

0.16


 .......

A6v=




0.38

0.13

0.29

0.19


 , A7v=




0.38

0.12

0.29

0.19


 , A8v=




0.38

0.12

0.29

0.19




We notice that the sequence of iterates v, Av, A2v,.... Akv tends to the equilibrium value

v* =




0.38

0.12

0.29

0.19


 . This is the PageRank vector of our web graph.

The Linear algebra approach

We can also look at this with the help of linear algebra. Let us denote by x1, x2, x3, x4

the importance of the four pages. Analyzing the situation at each node, we get the system:

x1= 1. x3 + 1/2 . x4

x2= 1/3 . x1

x3=1/3 . x1 +1/2 . x2 + 1/2 . x4

x4= 1/3 . x1 + 1/2 . x2

This is equivalent to finding solutions of the equation Ax=x where A=




0 0 1 1/2

1/3 0 0 0

1/3 1/2 0 1/2

1/3 1/2 0 0




Calculating eigenvectors of the above equations, we get eigenvectors of the form c:




12

4

9

6




Since PageRank should reflect only the relative importance of the nodes and since the eigen-

vectors are just scalar multiples of each other, we can choose any of them to be the PageRank

vector. Choose v* to be the unique eigenvector with the sum of all entries equal to 1. This

holds for c= 1/31 thus giving us our page rank vector. We can also understand the same by

a probabilistic approach. Since the importance of a web page is measured by its popularity

i.e. the number of links it has, we can view the importance of page i as the probability that
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a random surfer on the internet that opens a browser to any page and starts following the

hyperlinks (Refer to the first figure), will visit the page i. The calculations remain the same

as in the first approach, but the interpretation varies.

Say, a random surfer that is currently viewing webpage 2, has probability 1/2 to go to

page 3 and 1/2 to go to page 4. We can model the process as a random walk on graphs.

Each page has probability 1/4 to be chosen as the starting point. So the initial probability

distribution is given by the column vector




1/4

1/4

1/4

1/4


 . The probability that page i will be visited

after one step will be Ax and so on. The probability that page i will be visited after k steps

is Akx. The sequence Ax, A2x... Akx.. converges to a unique probabilistic vector v* called

the stationary distribution and will be the PageRank vector. Moreover, the entry at the i

position in the vector v* is simply the probability that at each moment at random surfer

visits the page i. The PageRank vector we have calculated by different methods indicates

that page 1 is the most relevant page. If we take a look at the graph, we see that node 3

has only one outgoing link to node 1 so it transfers all of its importance score to node 1.

The web is not one simple graph. It certainly has more than four pages. And it is

extremely heterogeneous in nature. This gives rise to certain problems. The most common

ones are Dangling nodes and Disconnected graphs.

Dangling Nodes and Disconnected graphs

Dangling nodes are the nodes which do not have any outgoing edges. Extending our

simple example, suppose that there some pages that do not have any out-links (we call

them dangling nodes), our random surfer will get stuck on these pages, and the importance

received by these pages cannot be propagated. In the other scenario, if our web graph has

two disconnected components, the random surfer that starts from one component has no way

to get into the other component. All pages in other component will receive 0 importance.

An example is shown in Figure 3. Similarly, we can have disconnected components where

one graph is not connected to another page of another graph and hence leaves the surfer

stranded on one graph unable to surf further (See Figure 4).

In order to deal with these two problems, we first need to know about the Random

Surfer model. Say, A random surfer visits a web page with a certain probability which

derives from the page’s PageRank. The probability that the random surfer clicks on one

link is solely given by the number of links on that page. This is why one page’s PageRank

is not completely passed on to a page it links to, but is divided by the number of links on

the page.

So, the probability for the random surfer reaching one page is the sum of probabilities

for the random surfer following links to this page. Now, this probability is reduced by the

damping factor d. The justification within the Random Surfer Model, therefore, is that the

surfer does not click on an infinite number of links, but gets bored sometimes and jumps

to another page at random. The probability for the random surfer not stopping to click on
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Figure 3: Dangling Nodes

Figure 4: Disconnected graph

links is given by the damping factor d, which depends on the degree of probability therefore,

set between 0 and 1. The higher d is, the more likely will the random surfer keep clicking

links. Since the surfer jumps to another page at random after he stopped clicking links, the

probability therefore is implemented as a constant (1− d) into the algorithm. Regardless of

inbound links, the probability for the random surfer jumping to a page is always (1− d), so

a page has always a minimum PageRank.

Based on the introduction damping factor d, Now we modify previous transition matrix

as M = (1 − d)P +dR, where R = 1/N .




1 1 . . . 1

. . . .

. . . .

. . .

1 1 . . . 1




This new transition matrix models the random walk as follows: most of the time, a

surfer will follow links from a page if that page has outgoing links. A smaller, but positive

3 percentage of the time, the surfer will dump the current page and choose arbitrarily

a different page from the web, and “teleport” there. The damping factor d reflects the

probability that the surfer quits the current page and teleports to a new one. Since every

page can be teleported, each page has 1/n probability to be chosen. This justifies the

structure of R. Mathematically, once we have M , computing the eigenvectors corresponding

to the eigenvalue 1 is, at least in theory, a straightforward task. We would just need to solve

the system Ax = x. But when the matrix M has size 30 billion (as it does for the real Web
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graph), it becomes an overwhelming task. An alternative way of computing the probabilistic

eigenvector corresponding to the eigenvalue 1 is given by the Power Method.

Power Method Convergence

Theorem: Let M be a positive, column stochastic nxn matrix. Denote by v* its proba-

bilistic eigenvector corresponding to the eigenvalue 1. Let z be the column vector with all

entries equal to 1/n. Then the sequence z, Mz, ..., Mkz converges to the vector v*.

The theorem guarantees that the method works for positive, column stochastic matrices.

We reasoned that the iteration process corresponds to the way importance distributes over

the net following the link structure. Computationally speaking, it is much more easier,

starting from the vector with all entries 1, to multiply x, Mx ,..., Mnx until convergence

then it is to compute the eigenvectors of M .

In fact, in this case, one needs to only compute the first couple of iterates in order to get

a good approximation of the PageRank vector. For a random matrix, the power method is

known to converge slowly, in general. What makes it work fast in this case however is the

fact that the web graph is sparse. This means that a node i has a small number of outgoing

links (a couple of hundred at best, which is extremely small corresponding to the 30 billion

nodes it could theoretically link to). Hence the transition matrix A has a lot of entries equal

to 0.

Conclusion

In a nutshell, PageRank is a very simple application of linear algebra. But when a simple

calculation is applied hundreds of billions of times over the results, it can seem complicated.

However, it has changed the way we look at surfing nowadays to the extent that “google”

itself has become a widely used verb. There are many algorithms that search engines use.

Google has most recently come up with a new algorithm called “The Humming Bird”. It

looks at PageRank along with other factors like whether Google believes a page to be of

good quality, the words used on it and many other things.
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TORRICELLI’S TRUMPET: A PARADOX

ESHA SAHA

Abstract. The paradox is concerned with the volume and surface area of the Torricelli’s

Trumpet (also known as the Gabriel’s Horn) - a hornlike object created by revolving the

function f (x) = 1
x
∀x ∈ [1,∞) about the x- axis. It has finite volume but infinite surface

area. The paper is divided into three sections. Section 1 provides the definition of a

paradox with explanation. Section 2 explains the nature of the paradox and gives the

proof of the claim along with its converse. The question of other solids having similar

properties as that of the Gabriel’s Horn is explored in Section 3. In the end, based on

all the findings, some conclusions are drawn.

Introduction

It is extremely important to understand what is meant by a paradox and how it is

distinct from a fallacy, contradiction and an undecidable problem before moving on to the

Gabriel’s Horn Paradox. A paradox is a statement that apparently contradicts itself and

yet might be true. A fallacy however is a statement that appears to be true but is false.

For example, all infinite sets have the same number of elements in it. In computational

complexity theory and computability theory, an undecidable problem is a decision problem

for which it is impossible to construct a single algorithm that leads to a correct yes or no

answer. Paradoxes can be of various types such as veridical paradox, self-reference paradox,

infinite regress etc. Paradoxes appear in all disciplines, be it literature, philosophy, physics or

mathematics and may sometimes lead to evolving of theories and clarification of definitions

to avoid further contradictions and confusions.

The Torricelli’s Trumpet

Evangelista Torricelli (Fleron, 1999) was a student of Galileo and is best known for his

contribution to Physics and the discovery of barometer. He himself was surprised at this

infinitely long solid having a finite volume in spite of having an infinite surface area. It is

also called Gabriel’s Horn, Archangel Gabriel being the angel blowing the horn to announce

Judgement Day associating the finite with infinite (divine). This paradox is also known as

the painter’s paradox as the infinite surface of the solid can be painted with a finite supply

of paint. If the solid is filled with paint and since the volume is finite, the inner surface

would get completely painted.
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.

Figure 1: f (x) = 1
x , x ∈ (−∞,∞) 1 Figure 2: f (x) = 1

x∀x ∈ [1,∞)

It is important to understand the graph of the function f (x) = 1
x∀x ∈ (−∞,∞) which

is a hyperbola as in Figure 1. A hyperbola is the locus of all those points in the plane,

the difference of whose distances from two fixed point(the foci) gives a positive constant

(Weisstein, 2015a). The domain of the function has been restricted to x ∈ [1,∞) to avoid

the asymptote at x = 0. When the domain of the function used to form the solid is [1,∞),

the graph of the function is restricted to the first quadrant as in Figure 2.

Proof: Infinite surface with finite volume

Let f : [1,∞)→ R, f(x) = 1/x.

then the solid formed by revolving the graph of f(x) = 1/x about the x − axis is given in

Figure 3. Let a ∈ [1,∞), then we calculate the volume and surface area between x = 1 and

x = a, when a tends to infinity.

Figure 3: Solid of revolution

Part 1. Surface area

First we prove that the surface area of the solid approaches infinity. Surface area

(henceforth denoted by SA) of the solid is given by

1All figures generated using Wolfram Mathematica 9
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SA =
∫ b
a

2πf (x)

√
1 + f ′ (x)

2
dx.

Then SA=
∫ a
1

2π 1
x

√
1 +

(−1
x

)2
dx > 2π

∫ a
1

1
xdx = 2π log a

Now SA> 2π log a and as lima→∞ 2π log a→∞
⇒ SA→∞.

Hence, the surface area of the solid is infinite.

Part 2. Volume

Now we prove the statement of the paradox i.e. the volume of this solid is finite, given

that the surface area is infinite. The volume V of the solid is given by

V =
∫ a
1
πf (x)

2
dx,

i.e. V =
∫ a
1
π
(
1
x

)2
=π
(
1− 1

a

)
. (Anton, et al., 2002; Weisstein, 2015b)

Now lima→∞ V=π

Hence, the volume of the given solid is finite.

Converse of the above property is false.

Proof: Now the converse of the above property is not true i.e. if the surface area is fi-

nite then the volume will be finite (Gabriel’s Horn Wikipedia, 2015). This can be proved

mathematically.

Let f : [1,∞) → R be a continuously differentiable function. Then the surface area of

the solid of revolution of, y = f(x) about the x − axis is finite and so is the volume. The

result is proven next.

Since the surface area SA is finite then:

S = limt→∞
(

supx≥t f (x)
2 − f (1)

2
)

= limt→∞ sup
∫ t
1
f (x)

2
dx

≤
∫∞
1

∣∣∣f (x)
2
∣∣∣
′
dx =

∫∞
1

2f (x) |f ′ (x)| dx

≤
∫∞
1

2f (x)

√
1 + f ′ (x)

2
dx = SA

π <∞

Hence, ∃ y0 such that supremum sup {f (x) x ≥ y0} is finite. As a result,

M = sup {f (x) x ≥ 1} must be finite. Moreover, f is a continuous function on [1, t0],

f is bounded on [1, t0]. Therefore, volume V =
∫∞
1
f (x)πf (x) dx ≤

∫∞
1

M
2 2πf (x) dx

≤ M
2

∫ b
a

2πf (x)

√
1 + f ′ (x)

2
dx = M

2 .SA, and hence the volume is finite when the surface

area is finite.

Gabriel’s Wedding Cake

This section deals with another interesting solid called Gabriel’s wedding cake that follows

the same property as that of the Gabriel’s Horn. The figure is generated by revolving the

graph of the function g (x) = 1
nfor, n ≤ x < n+ 1 for n = 1, 2, 3, .... about the x− axis as

given in Figure 4. The solid so formed appears to be a cake of infinitely many layers and

hence the name.
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Figure 4: Gabriel’s Wedding Cake

Proof: The surface area of the n− th top is π
(
1
n

)2 − π
(

1
n+1

)2
. Therefore the total area of

the annular tops is given by

A =
∑∞
n=1

(
π
(
1
n

)2 − π
(

1
n+1

)2)
= π = π (1)

2

Hence the resulting top layer will be a complete disk of radius 1. The total surface area is

given by:

SA =
∑∞
n=1 2π

(
1
n

)
(1) = 2π

∑∞
n=1

(
1
n

)

This series is divergent as the p − series with p = 1,
∑∞
n=1

(
1
n

)
is divergent. Hence the

surface area is infinite.

Now as each layer is simply a cylinder, the volume of each of the layers is πr2, r being

the radius of each cylinder. Hence, the volume of the n − th cylinder will be π
(

1
n2

)
. The

total volume(V ) of the cake will be:

V = π
∑∞
n=1

(
1

n2

)

This is the p− series with p = 2 and converges by integral test for convergence for series.

Consider
∑∞
n=1

(
1

n2

)
= 1 + 1

22 + 1
32 + . . .

Euler found out this sum to be equal to be π2

6 and hence the volume V = π3

6 , which is finite

(Fleron 1999). Therefore, it can be concluded that Gabriel’s wedding cake is another solid

having infinite surface area and finite volume.

Conclusions

This paper has discussed the paradox of Torricelli’s trumpet. It has been proved mathe-

matically that it is possible to have solids that have infinite surface area but finite volume.

The converse of this property is not true. A quick test on the function f(x) = 1/x2, which

has a similar trend as that of the function in Figure 2 does not satisfy the conditions of the

paradox presented in this paper.
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THE EVOLUTIONARY GAMES

SHRUTI KAUSHAL

Abstract. Game Theory is the study of strategic decision making and has been used time and

again . It was first explicitly applied to biology in the 1970s, although similar developments

go back at least as far as the 1930s. This paper will focus on the application of game theory

to evolving populations of life forms in biology. We will in particular study the Hawk-Dove

Model, wherein we will make certain assumptions to bring the model closest to reality. This

model, after making suitable amends, can be extended to the human society which would then

analyze the behavioural patterns of a bully and a non-agressive person when confronted.

Introduction

Evolutionary game theory was first developed by R. A. Fisherin in his attempt to explain the

approximate equality of the sex ratio in mammals. Evolutionary game theory originated as an

application of the mathematical theory of games to biological contexts, arising from the realization

that frequency dependent fitness introduces a strategic aspect to evolution.

The Evolutionary Game Mode

It is important to realize that EGT is not just a specialist mathematical treatment of animal

contests to determine their dynamics and results, but in a manner similar to the field of evolutionary

algorithm. Evolutionary game theory transposes Darwinian mechanisms into a mathematical form

by adopting a System Model of evolutionary processes with three main components - Population,

Game, and Replicator Dynamics. The system process itself has four phases

• The first stage involves a population P(n) competing against each other. In this model

the competition is represented by the game. The population will exhibit variation among

competing individuals.

• In the next phase the ‘Game’ tests the strategies of the individuals under the “rules of

the game”. These rules produce different payoffs - in units of Fitness i.e. the production

rate of offspring. Individuals in the population adopt different types of strategies to be the

‘fittest’ and hence these mixed strategies directly affect the payoff results.

• Based on this resulting fitness each member of the population then undergoes replication

or culling determined by the exact mathematics of the Replicator Dynamics Process. This

overall process then produces a New Generation P(n+1). Each surviving individual now

has a new fitness level determined by the game result.

• The process is then repeated with the new generation taking the place of the previous one.

It is an iterative process.

Evolutionary Stability

The main aim is to determine when and under what conditions, the evolutionary stability is

achieved by the population while playing the games. The whole process can be summarised as

follows :
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Game Model

• A large population of individuals are randomly matched in pairs to play a symmetric and

finite two-player game, where initially, all individuals always play the same (pure or mixed)

strategy.

• Suddenly, a small population share switch to another strategy.

• If the residents on average do better than the mutants, then the resident strategy is evolu-

tionarily stable against that mutation.

A strategy is evolutionarily stable if it is evolutionarily stable against all mutations.

Different Approaches to Evolutionary Game Theory (EGT)

The first approach derives from the work of Maynard Smith and Price and employs the concept

of an evolutionarily stable strategy as the principal tool of analysis. It can thus be thought of as

providing a static conceptual analysis of evolutionary stability.

The second approach constructs an explicit model of the process by which the frequency of

strategies change in the population and studies properties of the evolutionary dynamics within that

model.

As an example of the first approach, consider the problem of the Hawk-Dove game, analysed by

Maynard Smith and Price in “The Logic of Animal Conflict”.

In this game, two individuals compete for a resource of a fixed value V>0. (In biological contexts,

the value V of the resource corresponds to an increase in the Darwinian fitness of the individual

who obtains the resource; in a cultural context, the value V of the resource would need to be given

an alternate interpretation more appropriate to the specific model in hand.) Each individual follows

exactly one of two strategies described below:

Hawk Initiate aggressive behaviour,

not stopping until injured or until one’s opponent backs down.

Dove Retreat immediately if one’s opponent initiates aggressive behaviour.

If we assume that,

• Whenever two individuals both initiate aggressive behaviour, it eventually results in conflict

and the two individuals are equally likely to be injured.
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• The cost of the conflict reduces individual fitness by some constant value C>0

• When a Hawk meets a Dove, the Dove immediately retreats and the Hawk obtains the

resource and when two Doves meet the resource is shared equally between them.

Then the fitness payoffs for the Hawk-Dove game can be summarized according to the following

matrix:

Hawk Dove

Hawk 1
2
(V-C) V

Dove 0 V
2

The payoffs listed in the matrix are of a player using the strategy in the appropriate row,

playing against someone using the strategy in the appropriate column. (For example, if you play

the strategy Hawk against an opponent who plays the strategy Dove, your payoff is V; else it is 0.)

Let ∆ F denote the change in fitness for an individual following strategy s1 against an opponent

following strategy s2. Also let F(s) denote the total fitness of an individual following strategy s.

Suppose that each individual in the population has an initial fitness of F0. If σ is an evolutionarily

stable strategy and µ is a mutant attempting to invade the population, then

F(σ) = F0 + (1p) . ∆ F (σ,σ) + p . ∆ F(σ,µ) ........(I)

F(µ) = F0 + (1p) . ∆ F(µ,σ) + p . ∆ F(µ,µ) ..........(II)

where p is the proportion of the population following the mutant strategy µ.

Since σ is evolutionarily stable, the fitness of an individual following σ must be greater than the

fitness of an individual following µ, otherwise the mutant following µ would be able to invade, and

so

F(σ) >F(µ)

Now as p→ 0

⇒ ∆ F(σ,σ) >∆ F(µ,σ) or, ⇒ ∆ F(σ,σ) = ∆ F(µ,σ) And ∆ F(σ,µ) >∆ F(µ,µ)

In other words, it means that a strategy σ is an ESS if one of two conditions holds:

• σ does better playing against σ than any mutant does playing against σ or,

• some mutant does good playing against σ just as well as σ does, but σ does better playing

against the mutant than the mutant does.

Hence we can conclude that:

• If V>C , then the strategy Hawk is evolutionarily stable.

• If V<C , then there is no evolutionarily stable strategy if individuals are restricted to

following pure strategies, although there is an evolutionarily stable strategy if players may

use mixed strategies.

A mixed strategy would involve that the fitness of both the players i.e. Hawk and Dove is same.

Consider the mutant strategy to be Hawk. Then, From (I) and (II) we get

W(Hawk) = (1/2)(V-C) + (1-p)(V)

W(Dove) = p(0) + (V/2)

where ‘W’ describes the fitness and ‘p’ is the polpulation of the mutants i.e. Hawks

Equating the above two equations we get that stability is achieved in a situation having a mix

of the two strategies where the population of Hawks is V/C.

The figure below is the solution for V=2, C=10 and fitness starting base B=4. The fitness of

a Hawk for different population mixes is plotted as a black line, that of Dove in red. An ESS (a

stationary point) will exist when Hawk and Dove fitness are equal: Hawks are 1
5

of population and

Doves are 4
5

of the population.
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Figure 2

Conclusion

Clearly, Game theory is vast and its applications are numerous. Evolutionary Game theory itself

spreads to many models of evolution. It is a major vehicle to help understand and explain some of

the most fundamental questions in biology including the issue of group selection, altruism, parental

care, co-evolution, and ecological dynamics.
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