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PREFACE

Éclat, with its roots in French, means brilliance.The journey of Éclat gave us an enriching
experience and sometimes even tested our brilliance. We have immense pleasure in bringing
out its 5th volume. This journal aims at providing a platform for students who wish to
publish their ideas and also other concepts they might have come across. To present diverse
concepts, the journal has been divided into four sections - History of Mathematics, Rigour
in Mathematics, Extension of Course Contents and Interdisciplinary Aspects of Mathemat-
ics. The work contained here is not original but consists of the review and expository
articles contributed by both faculty and students. We expect that this volume will enhance
the knowledge of students and stimulate them to get into the various realms of Mathematics.

The entire department of mathematics of our college has been instrumental in the pub-
lication of this journal. Its compilation has evolved after continuous research, discussion
and rigorous efforts. We hope that this journal would keep on encouraging the students
to hone their skills in doing individual research and in writing academic papers. It is an
opportunity to go beyond the prescribed limits of the text and to expand the knowledge of
the subject. We would like to thank all the authors who have contributed their papers/ideas

in this volume of Éclat.

Also, we express our sincere thanks to the faculty advisors without whose guidance the
efforts made couldn’t have been possible to come to in its present form.

Editorial Team:

Sruthi Sekar, B.Sc.(H) Mathematics, IIIyr

Kritibha Rai, B.Sc.(H) Mathematics, IIIyr

Jasmine Bhullar, B.Sc.(H) Mathematics, IIyr

Yashaswika Gaur, B.Sc.(H) Mathematics, IIyr
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History of Mathematics

Mathematics is the oldest academic discipline involving stimulating and intriguing con-

cepts. It is far beyond the ken of one individual, and to make any contribution to the

evolution of ideas, an understanding of the motivation behind the ideas is needed. The

section covers the genesis of mathematical ideas, the stream of thought that created the

problem and what led to its solution. The aim is to acquaint the readers with histori-

cally important mathematical vignettes and make them inured in some important ideas of

Mathematics.
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GRIGORI PERELMAN: THE GENIUS IN HIDING

SHAMBHAVI GUPTA

Abstract. There have been many great mathematicians, who have made path breaking

discoveries in mathematics. But the most unusual amongst them is Grigori Perelman.

Perelman made a breakthrough in the field of Mathematics by his proof of the Poincarè

conjecture. Meet the genius who declined a million dollars and the Fields medal. Despite

his withdrawl from public life, he has been the subject of much media speculation. All

seek to answer the burning question: What would drive a man to shun his well-deserved

fame and recognition? Let us unravel the mystery man, the genius in hiding.

Introduction

Grigori Yakovlevich Perelman was born in Leningrad, Soviet Union (now St. Petersburg,

Russia) on 13 June 1966, to Jewish parents. His father, Yakov, was an electrical engineer

and his mother, Lyubov, was a mathematics teacher. His father had a major influence in

developing his problem solving skills. Speaking about his father, Perelman said:-

“He gave me logical and other math problems to think about. He got a lot of books for me

to read. He taught me how to play chess. He was proud of me”

Student Life, 1980’s

Early Life and Education

Perelman’s mother, Lyubov gave up graduate work in mathematics to raise him and also

helped develop his mathematical skills.

Perelman’s mathematical talent became apparent at the age of ten. He took part in dis-

trict mathematics competitions and showed a marked talent. Perelman started to attend a

mathematics club run by a nineteen-year-old coach named Sergei Rukshin, an undergraduate

student at Leningrad University.
3



4 SHAMBHAVI GUPTA

Rukshin quickly saw Grigori’s potential and hence a strong bond developed between

them. In the summer of 1980, Rukshin tutored Perelman in English so that he could enter

Leningrad’s Special Mathematics and Physics School Number 239 ( a specialized school with

advanced mathematics and physics programs). Perelman excelled in all subjects except

physical education. The highly talented mathematicians tutored by Rushkin were all put

in the same class. At the school, their mathematics teacher was Valery Ryzhik. Apart from

mathematics, Ryzhik ran a chess club, which Grigori attended. He showed considerable

talent in the game. When he was fifteen, Perelman attended a summer camp run by Rukshin,

which helped him develop his problem solving abilities in mathematics.

Perelman in Budapest,1982

In January 1982, he was selected to be a part of the team set to represent Soviet Union at

The International Mathematical Olympiad. He attended a session in Chernogolovka, where

the students were subjected to physical and mathematical training. Perelman not only

achieved full marks at the session in Odessa, but also went on to achieve full marks at the

International Mathematical Olympiad competition in Budapest. He received a gold medal

and a special prize for achieving a perfect score. Being a member of the Soviet team gave

Perelman direct entry to university.

Perelman entered Leningrad State University in autumn 1982. At that time, the Leningrad

Department of the Steklov Mathematics Institute of USSR Academy of Sciences was under

Ivan Vinogradov’s leadership and accepted no Jews. Aleksander Danilovic Aleksandrov

wrote to the director requesting that Perelman be allowed to undertake graduate work un-

der his supervision and hence graduation was granted. Yuri Burago was his official advisor.

His university work was exceptional and he graduated in 1987. He had already published a

number of papers:

• Realization of abstract k-skeletons as k-skeletons of intersections of convex polyhedra

in R2k−1 (Russian) (1985); (with I V Polikanova).

• A remark on Helly’s theorem (Russian) (1986)
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• A supplement to A D Aleksandrov’s, ‘On the foundations of geometry’(Russian)

(1987), in which Perelman discussed the equivalence of a Pasch-style axiom of Alek-

sandrov and some of its consequences.

• On the k-radii of a convex body (Russian) (1987).

Perelman went on to earn a Candidate of Sciences degree (the Soviet equivalent of Ph.D.)

at the School of Mathematics and Mechanics of the Leningrad State University, one of the

leading universities in the former Soviet Union. His thesis was titled Saddle surfaces in

Euclidean spaces(1990). He had already published one of the main results of the thesis in

an example of a complete saddle surface in R4 with Gaussian curvature bounded away from

zero (1989).

In 1991 Perelman won the “Young Mathematician Prize of the St. Petersburg Mathe-

matical Society” for his work on Aleksandrov’s spaces of curvature bounded from below.

Burago contacted Mikhael Leonidovich Gromov, who had been a professor at Leningrad

State University but was at this time a permanent member of the Institut des Hautes

tudes Scientifiques outside Paris, for recommending Perelman. The said invitation allowed

Perelman to spend several months at IHES working with Gromov on Aleksandrov spaces.

After visiting the IHES he returned to the Steklov Mathematics Institute but through the

efforts of Gromov, Perelman was invited to the United States to talk at the 1991 Geometry

Festival held at Duke University, North Carolina. He lectured on Aleksandrov spaces with

Burago and Gromov. Perelman’s first major paper, written jointly with Burago and Gromov,

was ‘A D Aleksandrov spaces with curvatures bounded below’ (1992).

Perelman was invited in 1992 to spend the autumn semester at the Courant Institute,

New York University, and for the spring 1993 semester at Stony Brook, State University of

New York, both funded by a fellowship.

Thereafter, he accepted a two-year Miller Research Fellowship at the University of California,

Berkeley in 1993. He published some remarkable papers during these years. Elements of

Morse theory on Aleksandrov spaces (1993) investigates the local topological structure of

Aleksandrov spaces. A manifold of positive Ricci curvature with almost maximal volume

(1994) solves a conjecture about a complete Riemannian manifold Mn.

Grigori in UC, Berkeley, 1993
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The biggest breakthrough, however, was his paper, Proof of the soul conjecture of Cheeger

and Gromoll (1994). Perelman was invited to address the International Congress of Math-

ematicians in Zurich in 1994, where he gave a lecture on ‘Alexandrov spaces with curvature

bounded below’. After having proved the Soul conjecture in 1994, he was offered jobs at

several top universities in the US, including Princeton and Stanford, but he rejected all of

them and returned to the Steklov Institute in St. Petersburg in the summer of 1995, for

a research-only position. In 1996, he refused to accept the European Mathematical Society

prize.

His Contribution To Mathematics

Grigori Perelman made landmark contributions to Riemannian geometry, Aleksandrov

geometry and Geometric topology. In 1994, Perelman proved the soul conjecture (conjectured

by J Cheeger and D Gromoll in 1972). In 2003, he proved Thurston’s geometrization

conjecture (conjectured in 1970 ). This consequently solved the Poincarè conjecture; posed

in 1904 by Henri Poincarè, before which its solution was viewed as one of the most important

and difficult open problems in topology.

Grigori presented the proof of Poincarè conjecture in three papers made available in 2002

and 2003. The inspiration for the proof came from his discussions with Richard Hamilton,

whose lecture he attended at the institute for advanced study. Hamilton used Ricci flow to

attack the problem.

Perelman explaining Poincarè conjecture, 2003

The three preprints posted on the arXiv in 2002-2003 are:-

(1) The entropy formula for the Ricci flow and its geometric applications;

(2) Ricci flow with surgery on three-manifolds; and

(3) Finite extinction time for the solutions to the Ricci flow on certain three-manifold,

which proved the above conjectures.

Perelman’s proof was rated one of the top cited articles in Math-Physics in 2008.

Grigori was awarded the Fields Medal (2006)-For his contributions to geometry and his

revolutionary insights into the analytical and geometric structure of the Ricci flow. Perelman

refused the invitation to be a plenary speaker at the 2006 International Congress of Math-

ematicians (the first person to have done so). He was also awarded the Clay Millennium
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Prize (2010) for the resolution of the Poincarè conjecture, which he rejected (although the

ceremony took place at the Institut Ocanographique, Paris in his honor).

Notable Awards

Some of the notable awards conferred upon him are:

• Saint Petersburg Mathematical Society Prize (1991) (accepted).

• European Mathematical Society Prize (1996), (declined).

• Fields Medal (2006), (declined); Millennium Prize (2010), (declined).

Withdrawal from Mathematics

Perelman’s Character and Persona

(1) No greed for name, fame or money: Perelman told Sir John Ball, who was then

the president of the International Mathematical Union, that his reason for refusing

the prize was that he was not interested in fame or money. He did not consider

himself a hero of mathematics. His reasons for refusing the medal, according to Ball,

are complex, but “it centers around his feeling of isolation from the mathematical

community, and not wanting to be seen as a figurehead.” All that mattered to him

was that the proof was correct. In 2010, when he was considered for prize by Clay

Institute, he turned down the prize saying that he had all he wanted.

(2) He is media phobic: Perelman has avoided journalists and other members of the

media. Masha Gessen, the author of ‘Perfect Rigor: A Genius and the Mathematical

Breakthrough of the Century’, a book about him, was unable to meet him.

(3) Moral character and reasons for withdrawl from Mathematics: In 2005,

Perelman resigned as a senior researcher at the Steklov Institute. Perelman is quoted

in an article in The New Yorker saying that he was disappointed by the ethical stan-

dards of the mathematical community. It is reported that he retired from mathe-

matics, finding it too painful and political. In 2010, when he was considered for prize

by Clay Institute, he told it would be unfair to not share the prize with Richard

Hamilton, and stated that “The main reason is my disagreement with the organized

mathematical community. I don’t like their decisions, I consider them unjust”.
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Conclusion

Let us end this article by quoting Mikhael Gromov:-

“Perelman has moral principles to which he holds. And this surprises people. They

often say he acts strangely because he acts honestly, in a nonconformist manner, which is

unpopular in this community - even though it should be the norm.“

It would not be wrong to say that Grigori Perelman wanted to be a servant of mathe-

matics, with no greed for recognition.
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SIR WILLIAM ROWAN HAMILTON - A MAN OF SHADES

PALAK GUPTA AND VIDUSHI SINGH

Abstract. Sir William Rowan Hamilton was an Irish mathematician, astronomer and

physicist, who made important contributions to classical mechanics, optics and algebra.

His greatest contribution is perhaps the reformulation of Newtonian mechanics, now

called Hamiltonian mechanics. In mathematics, he is perhaps best known as the inventor

of quaternions. He had a versatile personality and fancied himself as a poet. He was

titled as the Lagrange of Ireland. He lived a life of many fluctuations yet emerged to be

a remarkable personality.

Introduction

At the stroke of midnight, between 3 and 4 August, 1805 was born the man who went

on to become Ireland’s greatest man of science: Sir Rowan Hamilton. Possibly because

of his father’s financial circumstances, Hamilton was sent to the village of Trim (40 miles

north-west of Dublin) to live with his uncle , at the tender age of 3. His uncle, Reverand

James Hamilton was an accomplished linguist and polymat. Hamilton was educated by his

uncle, with whom he lived until he entered college.

Sir Rowan Hamilton

9
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Early Life And Education

William began his education as soon as he arrived in Trim, quickly revealing himself to

be a child prodigy. His uncle soon discovered that Hamilton had a remarkable ability to

learn languages. By the age of ten, he had had learnt both classical and modern European

languages, as well as Persian, Arabic, Hebrew, Hindustani, Sanskrit, and even Marathi and

Malay.

At the age of 12, Hamilton met young calculating prodigy, Zerah Colburn, who could per-

form amazing mental arithmetical feats. Hamilton joined in competitions of arithmetical

ability with him and one can say that losing to Colburn sparked Hamilton’s interest in

mathematics.

Hamilton’s formal introduction to mathematics came at the age of 13 when he studied

Clairaut’s Algebra, a task made somewhat easier as Hamilton was fluent in French by this

time.

At 15 years of age, he started studying the works of Newton and Laplace. In 1824, Hamilton

found an error in Laplace’s Mcanique cleste and, as a result of this, he came to the attention

of John Brinkley, the Royal Astronomer of Ireland, who said:-

“This young man, I do not say will be, but is, the first mathematician of his age.”

Hamilton entered Trinity College, Dublin at the age of 18. There he studied both classics

and mathematics. He was first in every subject and at every examination amongst a number

of extraordinary competitors. During his four years in Trinity, he demolished the competi-

tion in one examination after another. The college awarded him two separate ‘optimes’ in

Classics, both for Greek and physics, for his performances: no optimes had been awarded

for twenty years prior to this.

In 1827, in spite of his young age and lack of experience, he was appointed Andrews Pro-

fessor of Astronomy, and consequently became ex officio Astronomer Royal of Ireland and

director of the observatory at Dunsink, where he spent the rest of his life.

Career And Contributions

Hamilton made important contributions to the understanding of dynamics, classical me-

chanics and optics, invented quaternions and in graph theory, developed what he called the

‘Icosian calculus’.

• His greatest contribution is perhaps the reformulation of Newtonian mechanics, now

called Hamiltonian mechanics. This work has proven central to the modern study

of classical field theories such as electromagnetism, and to the development of quan-

tum mechanics.

• His first discovery, as a student, was in an early paper that he communicated in

1823 to Dr. Brinkley, who presented it under the title of ‘Caustics’, whose revised

version was accepted under the title, The Theory of System of Rays and the first
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part was printed in 1828 in the Transactions of the Royal Irish Academy. The

second and third parts appeared in the three voluminous supplements (to the first

part) which were published in the same Transactions, and in the two papers On a

General Method in Dynamics, which appeared in the Philosophical Transactions in

1834 and 1835.

In these papers, Hamilton developed his great principle of Varying Action. The most

remarkable result of this work is the prediction that a single ray of light entering

a biaxial crystal at a certain angle would emerge as a hollow cone of rays. This

discovery is still known by its original name,‘conical refraction’.

• In 1827, Hamilton presented a theory of a single function, now known as Hamilton’s

principal function, that brings together mechanics, optics, and mathematics, which

helped to establish the wave theory of light. He proposed for it when he first pre-

dicted its existence in the third supplement to his “Systems of Rays”, read in 1832.

• The most important of Hamiltons major mathematical works is The General Method

in Dynamics.

• Hamilton’s “Theory of Algebraic Couples”, published in 1835 by the Royal Irish

Academy, contained his first ideas about algebra. He tried to develop an algebra for

dealing with triples of the form :

a + ib + jc

where a, b, c are real and i, j are imaginary. On 16 October 1843 (a Monday),

Hamilton was walking along the Royal Canal with his wife to preside at a Council

meeting of the Royal Irish Academy. Although his wife talked to him now and

again, Hamilton hardly heard her, for the discovery of the quaternions, the first

non-commutative algebra to be studied, was taking shape in his mind:-

“ And here there dawned on me the notion that we must admit, in some sense, a

fourth dimension of space for the purpose of calculating with triples ... An electric

circuit seemed to close, and a spark flashed forth.”

He could not resist the impulse to carve the formulae for the quaternions

i2 = j2 = k2 = ijk = −1

in the stone of Broome Bridge (or Brougham Bridge as he called it). The multiplica-

tion is associative but not commutative. In 1958 the Royal Irish Academy erected a

plaque commemorating this. Hamilton felt this discovery would revolutionize math-

ematical physics and he spent the rest of his life working on quaternions. He wrote:-

“I still must assert that this discovery appears to me to be as important for the mid-

dle of the nineteenth century as the discovery of fluxions [the calculus] was for the

close of the seventeenth.”

• Hamilton introduced, as a method of analysis, both quaternions and biquaternions,

the extension to eight dimensions by introduction of complex number coefficients.
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His work was assembled in 1853 in the book Lectures on Quaternions. Today, the

quaternions are used in computer graphics, control theory, signal processing and in

pure mathematics, with applications throughout algebra and geometry. His treatise,

Elements of Quaternions was published posthumously in 1866. His ideas played a

major role in the development of matrix algebra.

• Hamilton developed the variational principle, which was reformulated later by Carl

Gustav Jacob Jacobi. He also introduced the Icosian game or Hamilton’s puzzle

which can be solved using the concept of a Hamiltonian path.

Commemorative stamp issued in 1943

Achievements And Acknowledgements

• He achieved the rare distinction of obtaining an optime, both for Greek and for

physics in his college life. Hamilton might have attained many more such honours

(he was expected to win both the gold medals at the degree examination), if he had

not been appointed to the Andrews Professorship of Astronomy in the University

of Dublin, a post vacated by Dr. Brinkley in 1827.

• He was awarded with, Royal Society Royal Medal and Fellow of the Royal Society

of Edinburgh in 1835.

• Hamilton’s Principle was acknowledged by the Royal Society of London, by Jacobi

in particular where he referred Hamilton as the illustrious Astronomer Royal of

Dublin and later as the Lagrange of your country.

• In 1837, he was elected as the President of the Royal Irish Academy.

• In 1843, he was awarded Civil List life Pension by the British Government.
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Character And Personal Life

In his prime, Hamilton was a convivial and jovial man whose wide circle of friends in-

cluded Agustus DeMorgan and John Herschel. Hamilton was ever courteous and kind in

answering applications for assistance in the study of his works.

He was excessively precise and hard to please with reference to the final polish of his own

works for publication; and it was probably for this reason that he published so little com-

pared with the extent of his investigations. It was one of the peculiar characteristics of

Hamilton’s mind never to be satisfied with a general understanding of a question; he pur-

sued the problem until he knew it in all its details.

During his lectures, he began with very elementary and obvious explanations and suddenly

he would switch to material totally incomprehensible to the students.

When Hamilton toured England and Scotland, he met the poet Wordsworth and they be-

came friends as Hamilton fancied himself as a poet. The two men had long debates over

‘science versus poetry’. Hamilton liked to compare the two, suggesting that mathematical

language was as artistic as poetry.

Hamilton had various romantic attachments but one in particular stands out. This was to

Catherine Disney, with whom he became infatuated, but due to family pressure, when she

married another man, he was disheartened. In desperation, he proposed to Helen Maria

Bayly, who was pathologically shy and timid. They had three children, two sons and a

daughter: William Edwin, Archibald Henry and Helen Eliza Amelia.

Death And Commemorations

Helen was unable to give him the domestic support he needed, as she suffered a serious

illness that left her semi-invalid for the rest of her life. As time passed, the regime of irreg-

ular meals, chronic overwork and marital unhappiness began to take its toll, and the poor

man increasingly sought solace from the bottle.

He was delighted to learn that he has been elected as the first foreign member of National

Academy of Sciences of the United States of America.

He died on September 2, 1865 in his sixtieth year.

COMMEMORATION OF HAMILTON:

• Hamilton’s equations are a formulation of classical mechanics.

• A commemorative coin was issued by the Central Bank of Ireland in his honour.

• Numerous other concepts and objects in mechanics, such as Hamilton’s principle,

Hamilton’s principal function, and the Hamilton-Jacobi equation, are named after

him.

• ‘Hamiltonian’ is the name of both a function (classical) and an operator (quantum)

in physics, and is, in a different sense, a term from graph theory.

• Hamilton College (New York), a liberal arts college in Clinton, New York, is named

in his honor.



14 PALAK GUPTA AND VIDUSHI SINGH

Coin issued by Central Bank of Ireland

• The RCSI Hamilton Society was founded in his name in 2004.

• The algebra of quaternions is usually denoted by H, or in blackboard bold in honour

of Hamilton.

Closing Note

Hamilton is recognized as one of Ireland’s leading scientists and is increasingly celebrated.

The Hamilton Institute is an applied mathematics research institute at NUI Maynooth and

the Royal Irish Academy holds an annual public Hamilton lecture at which Murray Gell-

Mann, Frank Wilczek, Andrew Wiles, and Timothy Gowers have all spoken.

The year 2005 was the 200th anniversary of Hamilton’s birth and the Irish government

designated it the ‘Hamilton Year’, to celebrate Irish science. Trinity College, Dublin marked

the year by launching the Hamilton Mathematics Institute.

The application of quaternions in computer graphics, control theory, signal processing and

orbital mechanics clearly depicts Hamiltons contribution to the advancement of technology.

His name has definitely been written with golden words in the history of mathematics and

astronomy.
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Rigour in Mathematics

This section introduces advance Mathematics to the readers aiming at high standards

of proofs. It stimulates interest and lays the foundation for further studies in different

branches.
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A MULTI-ECHELON MULTI PRODUCT PROFIT ORIENTED CLOSED

LOOP NETWORK DESIGN

JYOTI DARBARI, VERNIKA AGARWAL AND PC JHA

Abstract. Growing environmental concerns are drawing greater attention towards Closed-

Loop Supply Chains (CLSCs). Unlike the traditional supply chains, CLSCs focus on

product returns. An efficient and effective CLSC network works on the principle of re-

capturing value by considering appropriate value added product recovery options. This

article considers a general closed loop supply chain network design for recovery options

of returned products. In the paper, we consider a closed supply chain network which

includes raw material supplier, manufacturer, distribution centers, customer zones, col-

lection/inspection, fabrication, hybrid dismantling-component fabrication and recycling

centers. In the forward flow, the model considers production, distribution of the new

products to the customer zones and for the reverse flow it considers material recovery by

recycling and value added product recovery by considering refurbishing and repairing.

The returned products are disassembled and the components are sorted based on their

utility. The fabricated components are used as new parts for manufacturing new prod-

ucts and for refurbishing of the returned products which are further sold in the secondary

markets. A mixed integer linear programming model is formulated with an objective of

maximizing the total expected profit.

Introduction

A supply chain is a network of supplier, production, retailers, and transportation chan-

nels organized to acquire raw materials, convert them to finished products, and distribute

final products in an efficient way to customers (Pishvaeeet al. 2011). Closed-loop supply

chain management as defined by Guide and Van Wassenhove (2009) is:

The design, control, and operation of a system to maximize value creation over the entire

life cycle of a product with dynamic recovery of value from different types and volumes of

returns over time.

A closed-loop supply chain (CLSCs) comprises of two parts: forward and reverse logistics.

The forward flow encompasses activities related to the flow of materials and information

starting from the suppliers and ending with the final delivery of the finished product to

the customer. For the reverse logistics, the flow of returned products is processed from the

customers back to the manufacturer to recapture value of for proper disposal. The closed

loop supply chain network considered in the paper includes:

• raw material supplier,

• manufacturer,
17
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• distribution centers,

• customer zones,

• collection/inspection(CIC),

• fabrication center,

• hybrid dismantling-component fabrication centre,

• disposal centre,

• recycling center,

• secondary markets and

• spare markets.

In the forward flow, the model considers assembly of the components and the flow of the

new products to the customer zones through the distribution centres and for the reverse flow

it considers value added product recovery, component recovery and material recovery. The

amount of returned products is assumed to be a predefined fraction of the demand of each

customer zone. The distribution centres also act collection centres and independent CIC

also operate in customer zones which have no distribution centre. The returned products are

sorted at the CIC based on their condition and are sent to either the fabrication centre or the

hybrid centre for dismantling. The number of products sent to the fabrication center also

depends on the demand of the fabricated products in the secondary markets. At the hybrid

facility the returned products are disassembled and their components are sorted based on

their utility. The components are either fabricated at the component fabrication unit of

the same facility or are sent for recycling or disposal. The fabricated components which

are as good as new components are used as new parts for manufacturing new products. A

fraction of the remaining components are sent to the fabrication centre for refurbishing of

the returned products which are further sold in the secondary markets, and the remaining

are sold at the spare markets. The objective is to maximize the total expected profit by

optimally determining the flow of returned products at each facility in the network.

Figure1
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Sets

We will use the following sets in our model:

c index of customers c=1, 2,....C;

l index of collection centers/inspection centers l=1, 2, .... L;

n index of products n=1,2, ....N

a index of components a=1,2, ....A

m index of secondary markets m=1, 2, .... M;

f index of spare markets f=1,2,....F;

j index of the distribution centers j=1,2....J.

Cost parameters

We will use the following cost parameters in our model:

CICn Per unit cost of inspection of nth product at collection center/inspection center.

CDMn Per unit cost of dismantling of nth product at dismantling center.

CFCn Per unit cost of fabrication of nth product at fabrication center.

CCFa Per unit cost of component fabrication of ath component the component fabrication

center.

CDCa Per unit cost of disposal component of ath component at disposal center.

CACn Per unit cost of assembling product n at manufacturing center center.

CPCa Per unit cost of procurement of ath component from component supplier.

Transportation costs:

TCLncl Unit transportation cost of the returned product n transported from customer

zone c to collection center/inspection center l.

TFLnl Unit transportation cost of the returned product n transported from collection

center/inspection center l to fabrication center.

TLnl Unit transportation cost of the recoverable product n transported from collection

center/inspection center l to dismantling center.

TS Unit transportation cost of the disassembled components transported from

disassembling center to disposal center.

TI Unit transportation cost of the fabricated components transported from

component fabrication center to fabrication center.

TM Unit transportation cost of the fabricated components transported from

component fabrication to manufacturing center.

TMDnj Unit transportation cost of the product n transported from manufacturing center

to distribution center j.

TDCnjc Unit transportation cost of product n transported from distribution center j to

customer zone c.
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Parameters

ρn Fraction of total units of nth product to be transported for fabrication from collection

center l.

γa Fraction of total units of ath component transported to component fabrication from

disassemble center.

δa Fraction of total units of ath component transported to recycling center from

disassemble center.

φa Fraction of total units of ath component transported to fabrication center from

component fabrication center.

ηa Fraction of total units of ath component transported to manufacturing center from

component fabrication center.

λn Fraction of the total demand that is returned.

DEMmn Demand of nth product at mth secondary market.

PREVmn Per unit revenue generated by nth product at mth secondary market.

CREVaf Per unit revenue generated by ath component at f th spare market.

RREVa Per unit revenue generated by ath component at recycling center.

PPROFn Selling price of nth product at primary market.

FDEMa Demand of the ath component at the fabrication center.

Xcn Units of nth product returned to customer zone c.

Capl Capacity of collection center /inspection center l.

Qna

{
1, if nth product consist of ath component

0, otherwise

Hjc

{
1, if jth distribution center serves cth customer zone

0, otherwise

Decision Variables

RXnl Units of nth product collected at collection center l.

Zn Units of nth product transported from collection centers to dismantling center.

On Total number of returned units of nth product transported to fabrication center.

Bmn Total number of returned units of nth product transported from fabrication center

to mth secondary market.

Va Total units of ath component transported from disassemble center to recycling

center.

Ga Total units of ath component transported to component fabrication.

DISa Total units of ath component transported to disposal center.

Ma Total units of ath component transported from component fabrication center to

manufacturing center.

RIa Total units of ath component transported from component fabrication center to

fabrication center.

RFaf Total units of ath component transported from component fabrication center to
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f th spare market.

CSa Total units of ath component provided by the supplier.

DCjn The amount of units of nth product at jth distribution center.

Dn Total amount of units manufactured.

Ycl

{
1, if customer zone c returns to collection center l

0, otherwise

Paf

{
1, if ath componet is sold to f th spare market

0, otherwise

MDEMa Demand of the ath component at the manufacturing center.

Objective Function

The objective function (Maximization) is given by:

Maximize Profit = TRG-TTC-TFC

The objective function consists of the following :

• Total revenue generated:

TRG =
∑

m

∑

n

PREVmnBmn +
∑

a

∑

f

CREVafRFaf +
∑

a

PREVaVa +
∑

n

DnPPROFn

(1)

The equation represents the revenue generated from (a) secondary markets;(b) spare mar-

kets; (c) the recycling of components and (d) primary market.

• Total transportation costs:

TTC =
∑

n

∑

c

{
∑

l

TCLncl}RXnl +
∑

n

{
∑

l

TFLnl}
∑

m

Bmn +
∑

n

∑

l

TLnlZn +

∑
a{TIRIa + TSDISa + TMMa}+

∑
n

∑
j TMDnjDn +

∑
n

∑
j

∑
c TDCnjcDCnj(2)

The equation represents the transportation cost incurred by (e) transporting returned

products from customer zones to collection/inspection centers; (f) transporting products

from collection/inspection centers to fabrication center; (g) transporting products from col-

lection/inspection centers to dismantling center; (h) transporting fabricated components

from component fabrication center to fabrication center; (i) transporting components from

disassemble center to disposal; (j)

• Total facility/processing cost:

TFC =
∑

n

(CACnDn + CICn

∑

l

RXnl + CDMnZn + CFCn

∑

m

Bmn) +

∑
a(CCFaGa + CPCaCSa +DISaCDCa)(3)
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The equation represents the cost parameters which include (k) cost of inspecting units;

(l) cost of dismantling units; (m) cost of fabricating units; (n) cost of disposal and (o) cost

of component fabricating.

Finally, the objective is to maximize profit which is the difference between the total

revenue generated and the various costs namely transportation cost and cost incurred at

various facilities.

Constraints

Following are the constraints :

• Collection/inspection Center

RXnl = λn
∑

c

XcnYcl ∀n, l (4)

∑

l

Ycl = 1 ∀c (5)

∑

n

RXnl 6 Capl ∀l (6)

The constraint(4) determines the total units of each returned product collected at the collec-

tion center l irrespective of whether the collection center is operating single or it is integrated

with distribution center. The constraint (5) ensures that each customer zone returns to only

one collection center. The constraint (6) signifies the capacity restriction. The amount of

units transported from customer zones to collection center should be less than or equal to

the capacity of that collection center.

• Fabrication center and Secondary markets

On =
∑

l

ρnRXnl ∀n (7)

∑

m

Bmn 6 On ∀n (8)

Bmn 6 DEMmn ∀m,n (9)

The constraints determine the total number of units of each product transported to fabri-

cation center after initial inspection and after realizing the total demand at the secondary

markets.

• Dismantling center
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Zn =
∑

l

(1− ρn)RXnl ∀n (10)

Here we determine the total number of units of each product transported from collec-

tion/inspection center to the dismantling center.

• Component fabrication center

Ga =
∑

n

γaQnaZn ∀a (11)

It determines the number of units that are transported to component fabrication center

from dismantling center.

• Recycling center

Va =
∑

n

δaQnaZn ∀a (12)

This constraint determines amount of units of each component send to the recycling center

from dismantling center

.

• Disposal center

DISa =
∑

n

(1− γa − δa)QnaZn ∀a (13)

This constraint determines amount of units of each component send for disposal from dis-

mantling center.

• Fabrication center

RIa 6 φaGa ∀a (14)

RIa > FDEMa ∀a (15)

The amount of components transported to fabrication center from component fabrication

center are determined and are not exceeding the demand of fabrication center.

• Manufacturing center

Ma = ηaGa ∀a (16)

MDEMa =
∑

n

QnaDn ∀a (17)

The amount of components transported to manufacturing center from component fabrica-

tion.

• Spare market
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RFaf − (Ga −Ma −RIa)Paf ∀a, f (18)

∑

f

Paf − 1 ∀a (19)

After satisfying the demands at fabrication center and service center the remaining compo-

nents are transported to spare market.

• Component Supplier

CSa = MDEMa −Ma ∀a (20)

The amount of components to be procured from the component supplier.

• Distribution center
∑

j

DCjn = Dn ∀n (21)

∑

c

XcnHjc = DCjn ∀j, n (22)

The amount of products transported to distribution center from manufacturing center and

the amount of products transported from distribution center to different customer zones.

• Non Negativity restriction

Bmn, RXmn, Zn, On, Va, Ga, DISa,Ma, RIaDMjm, Dn, CSa,MDEMa, DCa ≥ 0 ∀m,n, j, a
(23)

• Binary variable

Ycl, Paf , Hjc ∈ {0, 1} ∀c, l, a, f, j (24)

• Integer restriction

Bmn, RXmn, Zn, On, Va, Ga, DISa,Ma, RIaDMjm, Dn, CSa,MDEMa, DCa ≥ 0 ∀m,n, j, a ∈ Integer
(25)

**The optimization model has been applied to a case of a company manufacturing electronic

products. The case study can be provided on request.
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ROBE’S RESTRICTED PROBLEM OF 2+2 BODIES REVISITED

BHAVNEET KAUR

Abstract. In this problem, one of the primaries of mass m1 is a Roche Ellipsoid filled

with a homogeneous incompressible fluid of density ρ1. The smaller primary of mass m2

is an oblate body outside the Ellipsoid. The third and the fourth bodies (of mass m3

and m4 respectively) are small solid spheres of density ρ3 and ρ4 respectively inside the

Ellipsoid, with the assumption that the mass and the radius of the third and the fourth

body are infinitesimal. We assume that m2 is describing a circle around m1. The masses

m3 and m4 mutually attract each other, do not influence the motions of m1 and m2 but

are influenced by them. We have extended the Robe’s Restricted three-body problem

to 2 + 2 body problem under the assumption that the fluid body assumes the shape of

the Roche Ellipsoid ([2] Chandrashekhar(1987)). We have taken into consideration all

the three components of the pressure field in deriving the expression for the buoyancy

force viz (i) due to the own gravitational field of the fluid (ii) that originating in the

attraction of m2 (iii) that arising from the centrifugal force. In this paper, equilibrium

solutions of m3 and m4 and their linear stability are analyzed. We have proved that

there exist only six equilibrium solutions of the system. In a system where the primaries

are considered as earth-moon and m3,m4 as submarines, the equilibrium solutions of

m3 and m4 respectively when the displacement is given in the direction of x1− axis or

x2− axis are unstable.

Introduction

In([5]), the author has investigated a new kind of restricted three-body problem in which

one of the primaries of mass m1 is a rigid spherical shell filled with a homogeneous incom-

pressible fluid of density ρ1. The smaller primary is a mass point m2 outside the shell. The

third body of mass m3, supposed to be moving inside the shell, is a small solid sphere of

density ρ3, with the assumption that the mass and the radius of the third body are infini-

tesimal. He further assumed that the mass m2 describes a Keplerian orbit around the mass

m1. We studied the equilibrium solutions of m3 and analysed their linear stability.

In deriving the expression for the buoyancy force, Robe assumed that the pressure field of

the fluid ρ1 has spherical symmetry about the centre of the shell. He has taken into account

one of the three components of the pressure field, that is, due to the own gravitational field

of the fluid. In ([4]), Plastino investigated the effect of the remaining two components: (i)

that originating in the attraction of m2, (ii) that arising from the centrifugal force. They

incorporated these two components of pressure field into the dynamics of the Robe model

by considering that the fluid m1 adopts the shape of a Roche ellipsoid.
27
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Statement of the Problem and Equations of Motion

In this paper, one of the primaries of mass m1 is a Roche Ellipsoid filled with homoge-

neous incompressible fluid of density ρ1. The second primary of mass m2 (m1 > m2) is a

an oblate body outside the Ellipsoid. The third and the fourth body (of mass m3 and m4

respectively) are small solid spheres of density ρ3 and ρ4 respectively inside the Ellipsoid,

with the assumption that the mass and radius of the third and the fourth body are infini-

tesimal. Let R be the distance between the centres of mass of m1 and m2 . We assume that

m2 describes a circular orbit of radius R around m1 with constant angular velocity ω. The

masses m3 and m4 mutually attract each other but do not influence the motions of m1 and

m2.

As in the case of classical restricted problem ([6] Szebehely(1967)), we adopt a uniformly

rotating coordinate system Ox1x2x3 with origin of the coordinate system at the centre of the

bigger primary, Ox1 pointing towards m2 and Ox1x2 being the orbital plane of m2 around

m1. The coordinate system Ox1x2x3 is as shown in the Figure 1. Let the synodic system

of coordinates initially coincident with the inertial system rotate with angular velocity ω.

This is the same as the angular velocity of m2 which is describing a circle around m1. Let

initially the principal axes of m2 be parallel to the synodic axes and their axes of symmetry

be perpendicular to the plane of motion. Since m2 is revolving without rotation about m1

with the same angular velocity as that of the synodic axes, the principal axes of m2 will

remain parallel to them throughout the motion.

1 
 

 
 

 

M1(0,0,0) 
 

M3 (x1
(3), x2

(3), x3
(3)) 

x3 

x1 

R 

(  ) 

(  ) 

( ) 

M4 (x1
(4), x2

(4), x3
(4))

x2 

M2

(Oblate body)

a a 

c

  

Figure 1. Geometry of the Robe’s restricted problem of 2 + 2 bodies when

the bigger primary m1 is a Roche Ellipsoid and the smaller primary an

oblate body

The Equations of motion ofm3 and similarly ofm4 in the dimensionless cartesian coordinates

are
¨
x
(i)
1 − 2ω

˙
x
(i)
2 = V

(i)

x
(i)
1

, (1)

¨
x
(i)
2 + 2ω

˙
x
(i)
1 = V

(i)

x
(i)
2

, (2)

¨
x
(i)
3 = V

(i)

x
(i)
3

, (3)
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where

V (i) =
µj

Rij
+Di

[
Bi +

1

2
ω2

{(
x
(i)
1

)2
+
(
x
(i)
2

)2}
+ µ

{(
x
(i)
1

)2
− 1

2

(
x
(i)
2

)2
− 1

2

(
x
(i)
3

)2}

+
µA

2

{(
6x

(i)
1

)2
− 3

2

(
x
(i)
2

)2
− 9

2

(
x
(i)
3

)2}
+

(
µ+ 3

2µA

ω

)2]
.

µj =
mj

m1 +m2
, Di =

(
1− ρ1

ρi

)
i, j = 3, 4; i 6= j. (4)

Bi = πGρ1

(
I −A1

(
x
(i)
1

)2
−A2

(
x
(i)
2

)2
−A3

(
x
(i)
3

)2)

The Equations of motion of m3 and m4 can be rewritten as

¨
x
(i)
1 − 2ω

˙
x
(i)
2 =− µj

(
x
(i)
1 − x

(j)
1

)

R3
ij

+Di

(
ω2 + 2µ− C1 + 6µA

)
x
(i)
1 , (5)

¨
x
(i)
2 + 2ω

˙
x
(i)
1 =− µj

(
x
(i)
2 − x

(j)
2

)

R3
ij

+Di

(
ω2 − µ− C2 −

3

2
µA

)
x
(i)
2 , (6)

¨
x
(i)
3 =− µj

(
x
(i)
3 − x

(j)
3

)

R3
ij

+Di

(
−µ− C3 −

9

2
µA

)
x
(i)
3 , (7)

where

i, j = 3, 4; i 6= j (8)

and

Cl = 2 (πGρ1)Al (9)

= 2

(
µ

µ∗

)
Al (l = 1, 2, 3) (10)

A =
a2 − c2

5R2
([3]Bhavneet and Rajiv(2014)) (11)

and

µ∗ =
µ

πGρ1
. (12)

Equilibrium Solutions

The equilibrium solutions of m3 and m4 are given by

V
(i)

x
(i)
1

= V
(i)

x
(i)
2

= V
(i)

x
(i)
3

= 0 (i = 3, 4) .
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i.e. ,

−µj

(
x
(i)
1 − x

(j)
1

)

R3
ij

+Di

(
ω2 + 2µ− C1 + 6µA

)
x
(i)
1 = 0, (13)

−µj

(
x
(i)
2 − x

(j)
2

)

R3
ij

+Di

(
ω2 − µ− C2 −

3

2
µA

)
x
(i)
2 = 0, (14)

−µj

(
x
(i)
3 − x

(j)
3

)

R3
ij

+Di

(
−µ− C3 −

9

2
µA

)
x
(i)
3 = 0. (15)

with

i, j = 3, 4; i 6= j.

Equilibrium Solutions lying on x1− axis

By inspection, we see that the Equations (14),(15) are satisfied with x
(i)
2 , x

(i)
3 ; i = 3, 4

equal to zero. It remains to determine x
(i)
1 ; i = 3, 4 from the Equation (13) by putting

x
(i)
2 , x

(i)
3 ; i = 3, 4 equal to zero, we get

−µ4

(
x
(3)
1 − x

(4)
1

)

|x(3)1 − x
(4)
1 |3

+
{
D3

(
ω2 + 2µ− C1 + 6µA

)}
x
(3)
1 = 0. (16)

−µ3

(
x
(4)
1 − x

(3)
1

)

|x(4)1 − x
(3)
1 |3

+
{
D4

(
ω2 + 2µ− C1 + 6µA

)}
x
(4)
1 = 0. (17)

Multiplying the Equation (16) by µ3 and (17) by µ4 and adding, we get

x
(4)
1 = −λx(3)1 (18)

where

λ =
D3µ3

D4µ4
(19)

Substituting in the Equation (16), we get

x
(3)
1 = ±

[
µ4

{D3 (ω2 + 2µ− C1 + 6µA)} (1 + λ)
2

] 1
3

, (20)

and

x
(4)
1 = ∓λ

[
µ4

{D3 (ω2 + 2µ− C1 + 6µA)} (1 + λ)
2

] 1
3

. (21)

Hence
(
x
(3)
1 , 0, 0

)
and

(
x
(4)
1 , 0, 0

)
are the equilibrium solutions for m3 and m4 respectively

provided they lie within the Roche’s Ellipsoid. It may be noted that there are two values

of x
(3)
1 and two values of x

(4)
1 . We denote these values by ξ

(3)
1 , ξ

(3)
2 and ξ

(4)
1 , ξ

(4)
2 respec-

tively. Therefore, the positions of equilibrium for the system are
(
ξ
(3)
1 , 0, 0

)
,
(
ξ
(4)
1 , 0, 0

)

and
(
ξ
(3)
2 , 0, 0

)
,
(
ξ
(4)
2 , 0, 0

)
. We observe that substituting the Equation (18) in Equation
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(17) yields the same equilibrium solutions. The equilibrium solutions of m3 lying on x1−
axis are shown in Figure 2. Similarily, we find the equilibrium solutions lying on x2 and

x3− axis.

There exist two equilibrium solutions of the system lying each on x1− axis or x2− axis or

x3− axis. Hence, there exist six equilibrium solutions of the system, provided they lie within

Roche Ellipsoid. We observe that there are no other equilibrium solutions except these six.

x3

x1

R

( ! )

( ! )

x2

Figure 2. Location of Equilibrium Solutions of the Robe’s Restricted

Problem of 2+2 Bodies when the Bigger Primary is a Roche Ellipsoid and

the Smaller Primary is an Oblate Body. Circles denote the positions of m3

and triangles denote the positions of m4.

Stability of Equilibrium Solutions

Stability of Equilibrium Solutions lying on x1− axis

Let the equilibrium solution
(
x
(3)
1 , 0, 0

)
and

(
x
(4)
1 , 0, 0

)
of m3 and m4 be displaced to

(
x
(3)
1 + α

(3)
1 , α

(3)
2 , α

(3)
3

)
and

(
x
(4)
1 + α

(4)
1 , α

(4)
2 , α

(4)
3

)
.

The variational equations of m3 and m4 are

¨
α
(i)
1 − 2ω

˙
α
(i)
2 = α

(i)
1 p

(i)
1

(
3 + λ

1 + λ

)
(22)

¨
α
(i)
2 + 2ω

˙
α
(i)
1 = α

(i)
2

(
−p(i)1

1 + λ
+ p

(i)
2

)
(23)

¨
α
(i)
3 = α

(i)
3

(
−p(i)1

1 + λ
+ p

(i)
3

)
i = 3, 4 (24)

where

λ =
D3µ3

D4µ4
,

p
(i)
1 = Di

(
1 + 2µ− C1 +A

(
6µ+

3

2

))

p
(i)
2 = Di

(
1− µ− C2 +

3

2
A (1− µ)

)

p
(i)
3 = Di

(
−µ− C3 −

9

2
µA

)
.
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From the Equation (24), we ascertain that the motion of m3 and m4 parallel to x3 axis is

stable when

p
(i)
1

p
(i)
3

> 1 + λ i = 3, 4 in case ρ1 > ρ3, ρ1 > ρ4 (25)

and

p
(i)
1

p
(i)
3

< 1 + λ i = 3, 4 in case ρ1 < ρ3, ρ1 < ρ4 (26)

The remaining Equations (22) and (23) admit solutions of the form α
(j)
i = A

(j)
i eLjt, i =

1, 2, ; j = 3, 4.

The characteristic equations of m3 and m4 are given by

L4
i + L2

i

(
4ω2 −

(
Q

(i)
1 +Q

(i)
2

))
+Q

(i)
1 Q

(i)
2 = 0 i = 3, 4 (27)

where

Q
(i)
1 = p

(i)
1

(
3 + λ

1 + λ

)

Q
(i)
2 = p

(i)
2 −

p
(i)
1

1 + λ
.

Let Λi = L2
i , we obtain,

Λ2
i + Λi

(
4ω2 −

(
Q

(i)
1 +Q

(i)
2

))
+Q

(i)
1 Q

(i)
2 = 0 i = 3, 4. (28)

Let the roots of the Equation (28) be S
(i)
1 , S

(i)
2 . Then, S

(i)
1 + S

(i)
2 =

(
Q

(i)
1 +Q

(i)
2

)
− 4ω2.

S
(i)
1 S

(i)
2 = Q

(i)
1 Q

(i)
2

Discriminant ∆ of the Equation (28) is:

∆ = 16ω4 +
(
Q

(i)
1 −Q

(i)
2

)2
− 8ω2

(
Q

(i)
1 +Q

(i)
2

)

=
(
Q

(i)
1 −Q

(i)
2

)2
+ 8ω2

(
2ω2 −

(
Q

(i)
1 +Q

(i)
2

))

Case I: ρ1 < ρ3, ρ1 < ρ4.

In this case Di > 0, λ > 0, p
(i)
1 < 0, p

(i)
2 < 0, (i = 3, 4) as C1 > 1 + 2µ and C2 > 1 − µ.

Thus Q
(i)
1 < 0.

The equilibrium solutions
(
x
(3)
1 , 0, 0

)
and

(
x
(4)
1 , 0, 0

)
of m3 and m4 respectively when the

displacement is given in the direction of x1− axis or x2− axis are stable if S
(i)
1 and S

(i)
2 are

real and negative or we must have S
(i)
1 + S

(i)
2 < 0, S

(i)
1 S

(i)
2 > 0, ∆ > 0.

Now, S
(i)
1 S

(i)
2 > 0 if Q

(i)
2 < 0 i.e. if,

p
(i)
1

p
(i)
2

< 1 + λ i = 3, 4 (29)
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i.e , (
1 + 2µ− C1 +A

(
6µ+ 3

2

))
(
1− µ− C2 + 3

2A (1− µ)
) < 1 + λ i = 3, 4. (30)

This implies that S
(i)
1 +S

(i)
2 < 0,∆ > 0. Hence, the equilibrium solutions of m3 and m4 are

stable if the Equation (30) holds, else unstable.

Case II: ρ1 > ρ3, ρ1 > ρ4.

In this case Di < 0, λ > 0, p
(i)
1 > 0, p

(i)
2 > 0 (i = 3, 4). Thus Q

(i)
1 > 0 . The equilibrium

solutions
(
x
(3)
1 , 0, 0

)
and

(
x
(4)
1 , 0, 0

)
of m3 and m4 respectively when the displacement is

given in the direction of x1− axis or x2− axis are stable if S
(i)
1 + S

(i)
2 < 0, S

(i)
1 S

(i)
2 > 0,

∆ > 0.

Now, S
(i)
1 S

(i)
2 > 0 if Q

(i)
2 > 0. The region that is common to Q

(i)
2 > 0,

(
Q

(i)
1 +Q

(i)
2

)
< 2ω2

and ∆ > 0 is the stable region. The shaded region in Figure 3 shows the region in which

equilibrium solutions m3 are stable for λ = 0.1 and A ≈ 10−8 where

Q
(i)
1 +Q

(i)
2 = p

(i)
1

(
2 + λ

1 + λ

)
+ p

(i)
2

∆ =

(
p
(i)
1

(
4 + λ

1 + λ

)
− p(i)2

)2

+ 8ω2

(
2ω2 − p(i)1

(
2 + λ

1 + λ

)
− p(i)2

)

Similarly, we can study the stability of equilibrium solutions lying on x2− axis and x3−
axis.

Figure 3. The shaded

region corresponds to

the region of stability for

the equilibrium solutions

of m3 lying on x1 axis

Figure 4. The shaded

region corresponds to

the region of stability for

the equilibrium solutions

of m3 lying on x2 axis.

Conclusion

Celestial bodies in general are not spherical, rather they are oblate or axis symmetric

bodies. It is therefore essential that we concentrate on primaries which are axis symmetric
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Figure 5. The shaded region corresponds to the region of stability for the

equilibrium solutions of m3 lying on x3 axis.

bodies and preferably on oblate bodies. We have studied the motion of two infinitesimal

masses m3 and m4 supposedly moving inside m1 in three dimensions, taking m2 an oblate

body and m1 a Roche Ellipsoid. We have taken into consideration all the three components

of the pressure field in deriving the expression for the buoyancy force viz, due to the own

gravitational field of the fluid, that originating in the attraction of m2 and that arising from

the centrifugal force. We have proved that there exist only six equilibrium solutions of the

system, provided they lie within the Roche Ellipsoid. We have also studied the stability of

these equilibrium solutions.

Disclaimer: This article is a brief overview of the reserach work published in

my paper ‘Robe’s Restricted Problem of 2+2 Bodies when the Bigger Primary

is a Roche Ellipsoid and the Smaller Primary is an Oblate Body’ in the journal

Astrophysics and Space Science. It has been included in this journal to motivate

students to do research in this field.
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Extension of Course Contents

A great deal of learning happens beyond the formal coursework. This section hence, aims

to provide a creative, fertile setting for productive research that goes beyond the confines of

classroom, and precincts of syllabi. It strengthens and expands the existing knowledge and

adds interests to the course and provides an experience of transformative learning.
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DIFFERENT PATHS LEADING TO ONE TARGET

MONIKA SINGH

Abstract. The present article highlights the beauty of mathematics in re-exploring a

concept. Here we give 9 different proofs of the Euclid’s theorem.

Introduction

Besides evolving new concepts and results, one of the inherent characteristic of mathe-

matics is to search for different proofs, for different reasons, for an established result, and

specially the popular ones, namely, the one like - Euclid’s Theorem. This article contains

as many as 9 different proofs of Euclids Theorem, given by mathematicians time to time

using different techniques. For example, the proofs given by Euler, Goldbach, Mersenne,

Whang and Thomas Stieltjes etc. including the classical ones given by Euclid himself are

given here. In fact, an interesting thing to see would be that how one theorem can be proved

just by using a simple technique/argument of mathematics and at the same time, it can also

be proved by using sophisticated tools of mathematics !

In the article, any prerequisites required for a particular proof has been given at the

appropriate place to make the article self contained.

Eulid’s Theorem (statement): “Prime numbers are infinite”.

Proof by Euclid

Definition 1. A positive integer p > 1 is called prime number, or simply a prime if its

only positive divisors are 1 and p itself. For example, 2,3,5,7,..., 17,..., 37,..., 89..... etc.

Theorem 1 (Fundamental Theorem of Arithmetic, see [2]). Every positive inte-

ger n > 1 can be expressed as the product of primes. Moreover, the representation is unique

up to the order in which the factors occur.

Proof 1. We prove the theorem by contradiction. Suppose there are finitely many

primes, say p1, p2, ..., pn. Consider the positive integer N = p1p2...pn + 1.

Date: 24/03/2014.
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2 MONIKA SINGH

If N is prime, then it means we have one more prime greater than all the primes p1, p2, ..., pn,

which is a contradiction to our assumption.

If N is not prime, then as N > 1, by Theorem 1, N should be divisible by some prime,

say p. Clearly, this p must be one of the primes p1, p2, ..., pn.

⇒ p|(p1p2...pn) and p|N ⇒ p|(N − p1p2...pn)⇒ p|1,

which is a contradiction, since by definition a prime must be greater than 1.

Thus, the prime numbers can’t be finite in counting, and hence, they are infinite in number.

�

Proof 2 (see [2]). On the contrary suppose there are finitely many primes, say

p1, p2, ..., pn, arranged in an ascending order,i.e., say, p := pn be the largest of these.

Consider the positive integer N = p ! + 1.

If N is prime, then it means we have one more prime greater than all the primes p1, p2, ..., pn,

which is a contradiction to our assumption.

If N is not prime, then as N > 1, by Theorem 1, N should be divisible by some prime,

say q. Now since we have assumed only to be a finite number of primes, this q must be one

of the primes p1, p2, ..., pn, i.e., 1 < q ≤ p.
⇒ q | p !⇒ q | (N − p!)⇒ q|1,

which is a contradiction, since by definition a prime must be greater than 1.

Thus, the prime numbers can’t be finite in counting, and hence, they are infinite in number.

�

Proof by Braun

Proof (see [2]). On the contrary suppose there are finitely many primes, say p1, p2, ..., pn.

Take

N = p2 p3 ...pn + p1 p3 ...pn + .....+ p1 p2 ...pn−1. (1)

Clearly, N > 1. Therefore, by Theorem 1, there exists a prime p such that p |N . Clearly,

this p must be one of the primes p1, p2, ..., pn. I.e., p = pi, 1 ≤ i ≤ n.

Thus, p will divide all the terms in the R.H.S. of (1) except the term p1 p2 ...pi−1pi+1 ...pn.

⇒ p | {N − (p2 p3 ...pn + p1 p3 ...pn + p1 p2 ...pi−2pi ...pn

+ p1 p2... pi pi+2 ...pn + ...+ p1 p2 ...pi−1 pi pi+1...pn−1)}
⇒ p |p1 p2 ...pi−1 pi+1...pn, which is a contradiction. Hence our assumption goes wrong, and

there are infinite number of primes. �
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Proof by using Euler’s Totient Function

Definition 2 (Euler φ-function). For n ≥ 1, let φ(n) denote the number of positive

integers not exceeding n that are relatively prime to n. For example, φ(1) = 1, φ(2) =

1, φ(3) = 2 etc.

Observation. φ(p) = p− 1, whenever p is prime.

Definition 3. A function f : N→ R is said to be a multiplicative function if

f(mn) = f(m)f(n)

whenever gcd(m, n) = 1, m, n ∈ N. For example, the constant function 1 and the identity

function are trivially the multiplicative functions.

Theorem 2 (see [2]). The Euler φ-function is a multiplicative function.

Theorem 3 (see [2]). For n > 2, φ(n) is an even integer.

Proof ([2]). On the contrary suppose there are finitely many primes, say p1, p2, ..., pn.

Take N = p1p2...pn. Claim: If 1 < a ≤ N, then gcd(a, N) 6= 1.

Since a > 1, by the Fundamental Theorem of Arithmetic a has a prime divisor, say q.

Now since we have assumed only to be a finite number of primes, this q must be one of the

primes p1, p2, ..., pn. I.e., q |N . Therefore, gcd(a, N) ≥ q , and it is so for all 1 < a ≤ N.

Hence gcd(a, N) 6= 1 for all 1 < a ≤ N. Consequently, we can say that 1 is the only number

less than N and relatively prime to it. I.e., φ(N) = 1, which is a contradiction in view of

Theorem 3. Hence there are infinite number of primes. �

Proof by Goldbach

Definition 4. A Fermat number is a positive integer of the form Fn = 22
n

+ 1, n =

0, 1, 2, 3, .... Moreover, if Fn is prime, it is said to be Fermat prime. For example, F0 =

3, F1 = 5, F2 = 17, F3 = 257 and so on.

Observation. Clearly, the Fermat numbers are infinite in number.

Theorem 4 (see [2]). For Fermat numbers Fm and Fn, where m 6= n, gcd(Fm, Fn) = 1.

Proof ([2]). Since each Fermat number is greater than 1, by Fundamental theorem

of Arithmetic, each Fermat number is divisible by a prime. Then in view of Theorem 4,

all such primes should be distinct, otherwise there will exist at least one pair of Fermat

numbers, say Fr, Fs such that gcd(Fr, Fs) 6= 1, which is a contradiction. Therefore, there

are as many primes as there are Fermat numbers. Hence the number of primes is infinite.

�
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Proof by Stieltjes

Proof ([4]). On the contrary suppose there are finitely many primes, say p1, p2, ..., pr.

Take K = p1p2...pr. Therefore K can be written as K = mn, where m, n ≥ 1 and

gcd(m, n) = 1. Clearly, any of the primes pi’s (1 ≤ i ≤ r) will divide exactly one of m

and n, so that non of the pi’s divides m + n. But m + n > 1, so by the Fundamental

Theorem of Arithmetic it should have at least one prime divisor. Thus, both the statements

are contradictory to each other. Hence our assumption goes wrong, and there are infinite

number of primes. �

Proof using Abstract Algebra

Theorem 5 (Lagrange’s Theorem [3]). If G is a finite group and H a subgroup of

G, then o(H) divides o(G).

Theorem 6 (see [3]). Let G be a group and a ∈ G, then o(a)|o(G).

Definition 5 (see [2]). The numbers of the form Mn = 2n − 1, n ≥ 1 are called

Mersenne numbers.

Note. Let q be a prime, then we define Z∗q the group of integers modulo q as -

Z∗q := {1, 2, ..., q − 1}. Here the binary operation is a
⊗

q b. Clearly, o(Z∗q ) = q − 1.

Proof ([4]). Let p be an arbitrary prime. Consider Mp = 2p − 1. Since Mp > 1, by

the Fundamental Theorem of Arithmetic there exists some prime, say q, such that q|Mp.

Claim: q > p.

Now we have q | (2p − 1) ⇒ 2p ≡ 1 mod q.

Since p is prime, o(2) = p otherwise, o(2)|p, which is not possible.

As 2 ∈ Z∗q = G, by Theorem 6 we have o(2)|o(G) ⇒ p|(q − 1) ⇒ p < q.

It means for every prime p, there exists a greater one. Hence the number of primes is on

and on, i.e., infinite. �

Proof using Calculus

Definition 6. For x ∈ R+, we define the function π(x) by

π(x) := ]{p ≤ x : p ∈ P},

where P denotes the collection of all primes. I.e., the function π(x) gives the number of

primes that are less than a given positive real number x.

Definition 7. For any real number x, the function [x] called as the greatest integer

function takes the value equal to the greatest integer less than or equal to x. I.e., [x] is the

unique integer satisfying x− 1 < [x] ≤ x.
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Proof. We claim that: π(x) is an unbounded function of x.

Let P = {p1, p2, p3, .....} be the collection of all primes arranged in ascending order.

Consider the natural logarithm log(x) defined as log(x) :=
∫ x
1

1
t dt. Observe that if consider

the partition P = {1, 2, 3, ..., n + 1} of [1, n+1], where n = [x], then the area under the

graph of the function f(t) = 1/t for t ∈ [1, x], would be less than the upper Darboux sum

of f taken on P . I.e.,

log(x) ≤ 1 +
1

2
+

1

3
+ ...+

1

n− 1
+

1

n

≤
∑ 1

m
,

where the above sum extends over all m ∈ N which have only prime divisors p ≤ x. Now,

since by the Fundamental Theorem of Arithmetic every such m can be written uniquely as

the product of the form
⋃
p≤x

pkp , one may see that the last sum is equal to

∏

p≤x : p∈P

(∑

k≥0

1

pk

)
.

The inner sum is a geometric series with common ratio 1
p < 1, hence

log(x) ≤
∏

p≤x : p∈P

1

1− 1/p

=
∏

p≤x : p∈P

p

p− 1
=

π(x)∏

k=1

pk
pk − 1

.

Now clearly, pk ≥ k + 1, and thus

pk
pk − 1

= 1 +
1

pk − 1
≤ 1 +

1

k
=
k + 1

k
,

and therefore

log(x) ≤
π(x)∏

k=1

k + 1

k
= π(x) + 1.

And now since log(x) is unbounded, so would be π(x). So the claim is made. Hence the

number of primes are infinite. �

Proof by Whang

Theorem 7 (Ratio Test [6]). If
∑
an is a positive term series and lim

n→∞
an+1

an
= l. Then

(i) the series
∑
an converges if l < 1;

(ii) the series
∑
an diverges if l > 1;

(iiI) the test fails if l = 1.

Note. One may easily verify that by the Ratio test, the series
∞∑
n=1

an

n! , a > 0 is convergent.
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Theorem 8 (see [6]). If
∑
an, an > 0 is a convergent series, then lim

n→∞
an = 0.

Remark. The above Note and Theorem 8 combined together give: lim
n→∞

an

n! = 0, a > 0.

Theorem 9 (see [2]). If n is a positive integer and p is a prime, then the exponent

of the highest power of p that divides n! is
∞∑
k=1

[
n
pk

]
, where the infinite series remains alive

only for a finite number of terms, since
[
n
pk

]
= 0 for pk > n.

Proof. Let k be any positive integer greater than 1. Then by the Fundamental Theorem

of Arithmetic and Theorem 9, we have

k ! =
∏

p

pg(p, k), where p is prime

and

g(p, k) =

∞∑

j=1

[ k
pj

]
=
[k
p

]
+
[ k
p2

]
+ ...

<
k

p
+

k

p2
+ ... =

k

p

(
1 +

1

p
+

1

p2
+ ...

)

=
k

p

( 1

1− 1/p

)
=

k

p− 1
≤ k.

Thus we have

k ! =
∏
p
pg(p, k) ≤∏

p
pk.

Or,

1 ≤

∏
p
pk

k!
=

(∏
p
p
)k

k!
. (2)

Now on the contrary if the number of primes are finite then
∏
p
p = a(say) will be finite, so

that lim
k→∞

ak

k! = 0 by the above Remark. But this is not possible in view of the inequality

(2). Hence our assumption goes wrong, and the primes are infinite. �

The rationale behind such an article is to create a motivation for the students to explore

into mathematics with different mind sets. In search of different proofs of the Euclid’s

theorem I could find more than a dozen of proofs, but here I have given only those one

by which an undergraduate student can get an essence of proving a result by using the

techniques based upon the different concepts of mathematics, viz. number theory, algebra,

calculus and analysis etc. This is basically a composed article and the author claims no

originality for the contents.
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EUCLIDEAN GEOMETRY AND THE PARALLEL POSTULATE

KRITIBHA RAI

Abstract. This paper discusses Euclids axioms and the concept of Euclidean geometry.

It will focus on the fifth axiom also called the parallel postulate. We will be talking about

how the fifth postulate caused a lot of confusion in the early years. Many mathemati-

cians tried to prove the parallel postulates from the existing four axioms. However, on

expanding the picture and moving to a space, this method of proving the fifth axiom

from the first four was wrong. To see how the fifth axiom does not follow from the first

four axioms, we will be extending normal geometry to spherical and hyperbolic geometry.

Introduction

The geometry most of us are familiar with is the geometry of Euclid, but at the research

level the word geometry has a much broader definition. Today’s geometers do not spend

much of their time with a ruler and compass. It is more dependent on the way we visualize

things and how abstract these visualizations are.

Euclidean Geometry

To begin with let us define line and line segments. Like in a normal convention a line

is used for a line that extends indefinitely in both directions, while a line segment is a line

with two end-points.

The Euclids axioms are as follows:-

• Any two points can be joined by exactly one line segment.

• Any line segment can be extended to exactly one line.

• Given any point P and length r, there is a circle of radius r with P as its centre.

• Any two right angles are congruent.

• If a straight line intersects two straight lines L and M, and if the interior angles on

one side of N adds up to less than 180 degree, then the lines L and M intersects on

that side of N.

Figure 1

45
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The 5th axiom is illustrated in Figure 1. Where Line 1 is L and Line 2 is M

This 5th axiom is equivalent to the so called Parallel Postulate, which states that given

any line L and any point x not lying on L, there is exactly one line M that passes through

x and never meets L. Euclid used these five axioms to build the whole of geometry as it

was then understood. For example: The proof of a well known result that the angles of a

triangle add up to 180 degrees is drawn from the 5th axiom.

Figure 2

Referring to Figure 2, clearly by 5th axiom, the alternate angles i.e. y and y′ are equal also

x and x′ are equal. Otherwise the dotted line passing through A would meet the extended

BC line. Also, since the dotted line is a straight line so the sum x′, z, y′ will be 180 and

hence x + y + z = 180 as required.

What does this argument tell us about everyday life? An obvious conclusion that is

evident is that if you take three points A,B,C in space and draw straight lines connecting

them to form a triangle then the angle of this triangle will add up to 180 degrees. Further a

simple experiment will confirm this: Just draw a triangle on a piece of paper and cut it out

as neatly as you can, tear it into three pieces containing one corner each, place the corners

together, and observe that the angles do indeed form a straight line.

Now, if you are convinced that there cannot exist a triangle whose angles do not add up

to be exactly 180 degrees then you are moving towards understanding this topic! Well this

was exactly the conclusion drawn by everybody from Euclid in 300BC to Immanuel Kant

at the end of the 18th century.

However they were mistaken, about thirty years later the great mathematician Carl

Friedrich Gauss could conceive of such a triangle in his famous experiment, where he tried

to measure the angles of a triangle formed by the mountain peaks of Hohenhagen, Iselberg

and Brocken in the Kingdom of Hanover. This experiment was inconclusive because of the

difficulty of measuring the angles but this gave a new line of thought. Thus the truth of

Euclid’s axioms was questioned.

The Parallel Postulate

Out of all the axioms the most dubious was the 5th axiom. It is more complicated than

the other axioms and involves the infinite in a fundamental way. Simply put, is it not

curious, when one proves that the angles of a triangle add up to 180 degrees, that the proof

should depend on what happens in the outermost reaches of space?
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Let us examine the parallel postulate more closely, and try to understand why it feels so

obviously true. We think of two main arguments: the existence of a line parallel to a given

line and the uniqueness of this line.

• Existence: Given a straight line C and a point x not on it, we can find a line passing

through x parallel to C. Consider a point y on the same side of C as x and at the

same distance from C. Join x and y by a line segment (axiom 1) and then extend

this line segment to a full line A (axiom 2). Then A will never meet C and hence A

is the required line.

• Uniqueness: Join A and C by evenly spread perpendicular line segments (Figure 3)

with one of these segemnts through x. Now suppose that K is another line through

x. On one side of x, the line K must lie between A and C, so it meets the next line

segment at u. Say u is 1% of the way along the line segment from A to C. Then

K will meet the next line segment 2% of the way along and so on. Thus, after 100

segements, K will have met C. Therefore proving the uniqueness of A.

Figure 3

Finally, here is an argument that appears to show both the existence and uniqueness of

a line parallel to C through a given point.

Notice that what we just did was that we tried to prove the parallel postulate and that

is exactly what most of the mathematicians before the 19th century tried to do. What they

wanted was to deduce the parallel postulate from the other four axioms, thus showing that

it was dispensable. However this was not possible because the arguments that we just gave

and others like them contain many hidden assumptions which, when made explicit, are not

obvious consequences of Euclid’s first four axioms. Though plausible, they are no more

plausible than the parallel postulate itself, thus bringing us back to square one.

Spherical Geometry

A valid way to bring these hidden assumptions out into the open is by examining the

above arguments in a different context. In particular we choose the surface of a sphere, and

show that the parallel postulate is not true here.

However, this might sound absurd as the the surface of sphere contains no straight lines

at all. But if we simply apply the idea of reinterpretation i.e. if we redefine straight line,

such that the surface of sphere does contain straight lines.

The most natural way is, a line segment from x to y is the shortest path from x to y that

lies entirely within the surface of the sphere. You can imagine x and y to be two cities and
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the line segment as the shortest route that an aeroplane could take. Such a path will be a

part of a ‘great circle’. See Figure 4. Given the way we have defined a line segment, these

‘great circles’ make a good definition of a straight line in a spherical space.

Figure 4
Figure 5

Clearly, if we adopt these definitions then parallel postulate is certainly false. For ex-

ample, let L be the earth’s equator and x be a point in the northern hemisphere. It is not

hard to see that any great circle through x will lie half in the northern hemisphere and half

in the southern hemisphere, crossing the equator at two points that are exactly opposite

each other, see Figure 5. In otherwords there is no line through x that does not meet L.

Also the above mentioned two arguments do not hold true for spherical geometry. Clearly

the geometry which we think we are doing does not include possiblities of the spherical

space. Euclid’s first four axioms were devised to describe the geometry of an infinite, flat,

two-dimensional space, but we are not obliged to interpret them that way, unless, of course

this flatness follows from the axioms. Thus if we could somehow reinterpret these axioms

by giving new definitions to phrases like lines and line segments and show that the first four

axioms are true while the parallel postulate does not hold, then we are successful and we

can say that the parallel postulate does not follow from the other axioms.

However, spherical geometry cannot be used as the ‘reinterpretation’ because even though

the parallel postulate is false, not all the other first four Euclid’s axioms are true in sphere.

For example, a sphere does not contain circles of arbitrarily large radius, so axiom 3 fails,

and there is not just one shortest route from the north pole to the south pole, so axiom 1

is also not true. Hence, although spherical geometry helped us understand the defects of

certain attempted proofs of the parallel postulates, it still leaves open the possibility that

some other proof might work. Hence we shall learn about another reinterpretation, called

Hyperbolic Geometry. Here the parallel postulate will be false but the first four axioms

holds true.

Hyperbolic Geometry

There are several equivalent ways of describing hyperbolic geometry; the one that we are

going to use is the disc model, which was discovered by the great mathematician Henri

Poincaré.



EUCLIDEAN GEOMETRY AND THE PARALLEL POSTULATE 49

Since I can only provide limited information in this paper, we will discuss some of the

main features of Hyperbolic Geometry and see what it tells us about the parallel postulate.

Understanding the disc model is more complicated than understanding the spherical

geometry because we reinterpret not only ‘lines’ and ‘line segments’ but also the idea of

distance.

Figure 6 shows a tessellation of the hyperbolic disc by regular pentagons. This statement

needs explanation, since it is untrue if we think of distance in the usual way. However,

distances in a hyperbolic disc are not defined in the usual way, and become larger, relative

to normal distance, as we approach the boundary. Thus, it becomes clear why the pentagon

(look at the one marked with an asterisk) appears to have one side longer than all the

others. The other sides look shorter, but hyperbolic distance is defined in such a way that

this apparent shortness is exactly compensated for by their being closer to the edge.

Before, moving on to discussing the definition of lines in hyperbolic disc, we will discuss

about the Mercator’s projection. A general map of the earth is flat but in actual earth is

almost spherical and so distances in the map is necessarily distorted. Mercator’s projection

is one such way of carrying out the distortions. It is because of this that the countries near

the pole appear to be much larger than they really are. The nearer you are to the top or

bottom of such a map, the smaller the distances are, compared with what they appear to

be.

As we saw earlier, when we approach the edge of the hyperbolic disc, distances become

larger compared with how they look. As a result of this, the shortest path between two

points has a tendency to deviate towards the centre of the disc. This means that it is not

a straight line in the usual sense. It turns out that a hyperbolic straight line, that is, the

shortest path from the point of view of hyperbolic geometry, is the arc of a circle that meets

the boundary of the main circle at right angles (Figure 7)

Figure 6: A tessellation of the hyper-

bolic disc by regular pentagons
Figure 7

Referring to Figure 6 again we see that the edges of the pentagons, though they do not

appear straight, are in fact hyperbolic line segments since they can be extended to hyperbolic

lines. Thus, just like Mercator’s projection, the disc model is a distorting ‘map’ of actual

hyperbolic geometry.

Another very important property of hyperbolic geometry is that it satisfies all the first

four Euclid’s axioms. For example, any two points can be joined by exactly one hyperbolic
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straight line segment. Also, it may seem like we cannot find a circle of larger radius about

any given point, but since the distances become larger near the edge of the disc and so if a

hyperbolic circle almost brushes the edge, then its radius will be very large. See figure 8

Finally, we shall show that the parallel postulate is false for hyperbolic geometry. This

can be seen in Figure 9, where lines M and N meets at a point x not lying on L and none

of these two lines meet L, hence the uniqueness fails and so the parallel postulate doesn’t

hold true.

Figure 8: Hyperbolic circle happens to

look like ordinary circles, but their cen-

tres are not where one expects them to

be.

Figure 9

Conclusion

Clearly, geometry as a whole is very abstract. All the five Euclid’s axioms are valid only

in Euclidean geometry. In case of hyperbolic geometry, the first four axioms are valid but

the parallel postulate doesn’t hold true. This again removes the confusion that most of the

mathematicians in the early 18th and 19th century had, and why they were not successful

in deducing the parallel postulate from the other four axioms.
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KNOT THEORY: KNOT INVARIANTS

URVASHI NEGI AND GARIMA YADAV

Abstract. In topology, knot theory is the study of mathematical knots. A knot is an

embedding of a circle in 3-dimensional Euclidian Space, R3. Two mathematical knots

are equivalent if one can be transformed into the other via a deformation of R3 upon

itself and these transformations correspond to manipulations of a knotted string that do

not involve cutting the string or passing the string through itself. The polynomial knot

invariants are the most successful ways to tell knots apart.

INTRODUCTION

Two knots K1, K2 belonging to R3 are ambient isotopic (isotopic) if and only if there

exists an isotopy h from R3× [0, 1] to R3 s.t. h(K1,0) = h0(K1) =K1, and h(K1,1) =h1(K1)

=K2. We denote this as K1 ambient isotopic K2 or K1 isotopic K2. Given below is an

example of two equivalent knots.

Equivalent Knots

A link invariant is a function from the set of links to some other set whose value depends

only on the equivalence class of the link. Any representative from the class can be chosen to

calculate the invariant. There is no restriction on the kind of objects in the target space (i.e.

integers, polynomials, matrices or groups). We will be discussing the following invariants of

knots/links :

• Numeric Invariants: crossing number, unknotting number

• Colorability

• Polynomial Invariants (Alexander, Jones, HOMFLY polynomials)

NUMERIC INVARIANTS

• The crossing number of a knot K, denoted by C(K) is the least number of crossings that

occur in any diagram of the knot.

• A knot K has unknotting number ‘n’ (denoted by u(K) = n) if there exists a diagram

of K such that changing n crossings in the diagram turns the knot into the unknot and

there is no other diagram such that fewer changes turn it into the unknot.
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Trefoil

C(trefoil) = 3 and u(trefoil) = 1

Cinquefoil

C(cinquefoil) = 5 and u(cinquefoil) = 2

COLORABILITY

A diagram of a knot is colorable if and only if each arc can be drawn using one of the 3

colors such that at each crossing either 3 different colors come together or the same color

comes together. Also, at least 2 of the colors must be used.

Trefoil is colorable.

Colorability of trefoil knot

Unknot is not colorable because we use only one color to draw the unknot.

Figure 8 knot is not colorable because there is a crossing for which two different colors meet.

Unknot is not col-

orable Figure 8 knot is not colorable

But colorability is not a complete invariant. Figure 8 and unknot are not colorable, so

colorability cannot be used to show that Figure 8 knot is different from the unknot.
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POLYNOMIAL INVARIANTS

The different knot polynomials are:

• Alexander Polynomial (1928): It distinguishes all knots of 8 crossings or fewer,

but it does not distinguish a knot from its mirror image (i.e. amphicheiral knots).

• Jones polynomial (1984): It distinguishes all knots of 10 crossings or fewer, a

knot from its mirror image, but it does not distinguish mutant knots.

• HOMFLY polynomial (1985/87): It is a generalization of both Alexander and

Jones polynomials. It is named after its inventors Hoste, Ocneanu, Millet, Freyd,

Lickorish, Yetter (independently also Prztycki and Traczyk discovered the same poly-

nomial). It does not distinguish mutant knots.

Presently, there is no complete polynomial invariant for knots!

ALEXANDER POLYNOMIAL

Alexander polynomial can be computed in several ways:

• Alexander’s combinatorially method (1928): It uses the diagram of the knots,

and the Reidemeister moves (this method was presented at least 4 times as part of

the work concerning the DK9 project).

• Fox’s method (1963): It uses a representation of the fundamental group of the

complement of the knot. It was also mentioned in Alexander’s original paper in his

“Miscellaneous” section, but Fox’s description is more detailed.

• Conway’s skein relation (1969): It uses skein relation, some special equations

that connect the crossings of different knot diagrams. It was also mentioned in

Alexander’s original paper, but Conway’s presentation is clearer and thus it paved

the discovery for the Jones polynomial 15 years later.

JONES POLYNOMIAL

The Jones polynomial computed using the following rules is an invariant for knots:

• Rule 1: Vunknot(t) = 1

• Rule 2: Suppose that 3 knot/links differ at the arcs of one crossing as shown below:

Then, t−1 ∗ V (L+) − t ∗ V (L−) − (t1/2 − t−1/2) ∗ V (L0) = 0

For example, Vtrefoil(t) = −t4 + t3 + t
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HOMFLY POLYNOMIAL

The HOMFLY polynomial computed with the following rules is an invariant for knots:

• Rule 1: Punknot(l,m) = 1

• Rule 2: Suppose that 3 knots/links differ at the arcs of one crossing as shown below:

Then, l ∗ P (L+) + l−1 ∗ P (L−) + m ∗ P (L0) = 0

Conclusion

The theory of knots is an exciting field of mathematics. Although computers may help

us in distinguishing between knots, the fundamental problem of comparing knots remains

open. We still have no complete invariant. It has concrete applications in the study of

enzymes acting on DNA strands and a wide variety of applications in Biochemistry.
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Interdisciplinary Aspects of Mathematics

Mathematics is just not a classroom discipline but a tool for organizing and understand-

ing various concepts and applications. This section covers topics that delve into other

disciplines, integrating the mode of thinking and knowledge of the respective discipline with

Mathematics. The section hence highlights the cosmic scope of Mathematics, leveraging its

amalgamation with other disciplines.
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GAME THEORY AND BUSINESS STRATEGIES

NUPUR SOOD

Abstract. This paper discusses the application of game theory in forming business

strategies. It will talk about some basic concepts of game theory such as the types

of games, Prisoners Dilemma and Nash Equilibrium, further applying it to business

situations such as entry and exit of firms in a market and price war. We shall also briefly

discuss the recent news of social giant Facebook buying WhatsApp and the involvement

of Game Theory in its decision making.

What is Game Theory?

A game consists of three components:

• Set of players.

• Set of available strategies for each player.

• Set of payoffs to each player for each possible configuration of strategies.

Game Theory is a collection of tools predicting outcomes of a group of interacting agents

where an action of a single agent directly affects the payoff of other participating agents.

Types Of Games

A game can either be one in which moves (or choices) take place sequentially as in chess

or one in which choices are made simultaneously such as a game of rock paper scissor.

The distinction between simultaneous and sequential games is not so much about the timing

of the moves, but rather about the information available to players when a move is made.

In a sequential game, a player knows which particular choice her opponent has made from

all those available to her, whereas simultaneous games involve players making choices prior

to information becoming available about the choice made by the other. Business games

are rarely, if ever, ones in which decisions are made exactly at the same point in time by

all relevant firms. However, because it is often the case that companies must select from

options before knowing what options rivals have selected, many business choices are best

analysed as taking place within the framework of simultaneous games. Most actual games

probably combine elements of both simultaneous and sequential move games.

Prisoner’s Dilemma

The prisoner’s dilemma is defined as follows: Two criminal accomplices are arrested and

interrogated separately. Each suspect can either confess with a hope of a lighter sentence

(defect) or refuse to talk (cooperate). The police does not have sufficient information to

convict the suspects, unless at least one of them confesses. If they cooperate, then both
57
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will be convicted to minor offense and sentenced to a month in jail. If both defect, then

both will be sentenced to jail for six months. If one confesses and the other does not, then

the confessor will be released immediately but the other will be sentenced to nine months

in jail. The police explains these outcomes to both suspects and tells each one that the

other suspect knows the deal as well. Each suspect must choose his action without knowing

what the other will do. A close look at the outcomes of different choices available to the

suspects reveals that regardless of what one suspect chooses, the other suspect is better off

by choosing to defect. Hence, both suspects choose to defect and stay in jail for six months,

opting for a clearly less desirable outcome than only a month in jail, which would be the

case if both chose to cooperate.

Nash Equilibrium

A set of strategic options is a Nash equilibrium if each player is doing the best possible

given what the other is doing. Put another way, neither player would benefit by deviating

unilaterally from the outcome, and so would not unilaterally alter its strategy given the

opportunity to do so. In the above problem of prisoner’s dilemma, Nash Equilibrium occurs

if both of the prisoners defect. It is important to note that all games do not attain Nash

Equilibrium.

Business And Game Theory

In any business, interactions with customers, suppliers, other business partners, and

competitors play an integral role in any decision. Given that each firm is part of a complex

web of interactions, any business decision or action taken by a firm impacts multiple entities

that interact with or within that firm, and vice versa. Ignoring these interactions could lead

to unexpected and potentially very undesirable outcomes. Game theory, is a very useful

tool for studying interactive decision-making, where the outcome for each participant or

“player” depends on the actions of others.

Game Trees

What makes game theory different from other analytical tools such as decision trees or

optimization is that most analytical tools either take other parties actions as given, or try

to model or predict them. Hence, their analysis focuses on optimizing from the perspective

of one player and does not regard the strategic behaviour of other players.

EXAMPLE 1: Entry and Exit decisions

The manager of a firm is considering the possibility of entering a new market,

where there is only one other firm operating. The managers decision will be based on:

• Profitability of market, which in turn heavily depends on how the present firm

will react to the entry. The present firm could be accommodating and let the entrant

grab his share of the market or he could respond aggressively, meeting the entrant

with a cut-throat price war.
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• Investment level of the entering firm. The manager of the firm may invest

to the latest technology and lower his operating costs (low cost case) or he may go

ahead with the existing technology and have higher operating costs (high cost case).

The manager estimates that if his firm enters the market and the incumbent reacts ag-

gressively, the total losses will be $7 million in low cost case and $10 million in high cost

case. If the incumbent accommodates, however, the firm will enjoy a profit of $6 million in

low cost case and $4 million in high cost case.

SOLVING THE PROBLEM

One possible approach for studying this problem is decision analysis which requires us

to assess the probabilities for the incumbent being aggressive and accommodating. Assume

that in this case, the manager thinks there is an equal chance of facing an aggressive and

an accommodating rival. Given the estimated probabilities, we can draw the decision tree:

When we look at the profits, it is easy to see that if the manager chooses to enter he

should invest in the latest technology. But still with a simple analysis, we see that it does

not make sense to enter the new market, as in expectation, the company loses $0.5 million.

Can we conclude that the firm should not enter this market? What if the probabilities were

not equal, and the probability of finding an accommodating rival was 0.55? The point

is, the manager’s decision is very much dependent on the probabilities that he

assessed for the incumbent’s behaviour.

As an alternative approach, we can use game theory. The best outcome for the

incumbent is when she is the only one in the market. In this case, she would make a profit

of say, $15 million. If she chooses to be accommodating, her profits would be $10 million

if the entrant enters with the existing technology, i.e., high cost case, and $8 million if he

enters with the latest technology, i.e., low cost case. If she chooses to be aggressive, her

profits would be $3 million and $1 million, respectively. Using the new information, we can

draw a new tree, a game tree.

We can solve this problem by folding the tree backwards. If the firm were to enter, the

best strategy for the incumbent is to accommodate. Knowing that this would be the case,
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Game tree for the entry-exit model.

entering this new market would be worthwhile for the entrant. The same concept is used in

another business strategy.

EXAMPLE 2: Price War

The players in the game we examine here are two firms, TopValue and PriceRite. Each

firm must make a choice about the price at which it sells its product. To keep things as

simple as possible, we suppose each firm has a simple binary choice: it can either cut its

price (Cut) or leave it unchanged (Stick). The game is played just once.

As each of the two firms has two strategies available to it, there are four possible configu-

rations of strategy, shown by the intersections of the row and column strategy choices in the

matrix. The pair of numbers in each cell of the matrix denotes the ‘payoff’ (profit in this

case) that each firm receives for a particular choice of option by Topvalue and PriceRite.

The first number denotes the payoff to Topvalue, the second the payoff to PriceRite.

SOLVING:

To predict the outcome of this game, it is necessary to consider how the firms handle their

strategic interdependence:

• NON CO-OPERATIVE SOLUTION: The first approach is to assume that each

firm maximises its own profit, conditional on some expectation about how the other

will act, and without collaboration taking place between the firms. One important

concept that is widely used in looking for solutions to non-cooperative games is the

idea of dominant strategy.
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DOMINANT STRATEGY: A player has a dominant strategy when it has one

strategy that offers a higher payoff than any other irrespective of the choice made

by the other player. A widely accepted tenet of non-cooperative game theory is that

dominant strategies are selected where they exist. Let us examine the payoff matrix

to see whether either firm has a dominant strategy. First, look at the game from

TopValue’s point of view. If PriceRite chooses Cut, TopValue’s preferred choice is

Cut, as the payoff of 2 from cutting her price exceeds the payoff of 1 from sticking.

Conversely, if PriceRite chooses Stick, TopValue’s preferred option is Cut. We see

that whatever PriceRite chooses, Cut is best for TopValue, and so is TopValue’s

dominant strategy. Similarly the dominant strategy for PriceRite is also Cut. Game

theory analysis leads us to the conclusion that the equilibrium solution to this game

consists of both firms cutting price.

Note that the outcome is inefficient. Both firms could do better if they had chosen

Stick (in which case the profit to each would be three rather than two).

Why has this state of affairs come about?

There are two facets to the answer. The first is that the game has been played

non-cooperatively. The second concerns the payoffs. These payoffs determine the

structure of incentives facing the firms. In this case, the incentives are not conducive

to the choice of Stick.

• CO-OPERATIVE SOLUTION AND ITS SUSTAINBILITY: Suppose that firms

were to cooperate, making their choices jointly rather than separately. If both firms

agreed to Stick and did what they agreed to do - payoffs to each would be 3 rather

than 2 .

But there is a problem: can these greater rewards be sustained? If self-interest

governs behaviour, they probably cannot. To see why, note that the (Stick, Stick)

outcome is not a Nash equilibrium. Each firm has an incentive to defect from the

agreement to unilaterally alter its strategy once the agreement has been reached.

Imagine that the two firms had agreed to Stick, and then look at the incentives

facing TopValue. Given that PriceRite has declared that it will not cut its price,

TopValue can obtain an advantage by defecting from the agreement (free-riding),

leaving PriceRite to Stick - as agreed - but cutting price itself. In this way, firm

TopValue could obtain a profit of 4. Exactly the same argument applies to PriceRite,

of course. There is a strong incentive operating on each player to attempt to obtain

the benefits of free-riding on the other’s pollution abatement. These incentives to

defect from the agreement mean that the cooperative solution is, at best, an unstable

solution.

A POSSIBLE SOLUTION: A question that arises is, is it possible to transform this

game in some way so that the (Stick, Stick) strategy pair becomes a stable cooperative

solution?

There are ways in which this might be done. One possibility would be to negotiate an

agreement with built-in penalty clauses for defection. For example, the agreement might

specify that if either party defects (cuts) it must pay a fine of 3 to the other. If we construct
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the payoff matrix that would correspond to this agreement, it will be seen that the game

structure has been transformed so that it is no longer a Prisoner’s Dilemma game. Moreover,

both firms would choose to abate.

EXAMPLE 3: Facebook buying Whatsapp

Social networking giant Facebook announced its decision to buy WhatsApp, a peer-to-

peer messaging service linked through mobile numbers, for $19 billion (about Rs. 1,18,000

crore). A closer look at the fine nuances of how the bold move was probably guided reveals

a carefully crafted strategy based on principles of game theory:

Facebook’s strategy was simple: price out rivals. There are reports that Internet giant

Google was also in active discussions to buy out WhatsApp. Initial reports had claimed

that Google had bid $10 billion for the company, just about half of the amount Facebook

offered. Later reports suggest that Google upped its offer for WhatsApp after it learned

how much Facebook would eventually pay the messaging service. It is an example of a game

theoretic exercise, where firms try to outthink each other.

It is best explained in the context of auctions. An auction is a non-cooperative game

involving several players. Each player assumes that the other players would react in a

certain way for every action of his. The strategies and tactics are based on this assumption.

In mathematics, these are called as “mixed probabilities”. Facebook’s final price offer was

based on a probability it had assigned about what other potential bidders- such as Google-

may be willing to offer for WhatsApp. Likewise, Google’s reported $10 billion offer was also

based on what it thought was probable for a competitor to offer.

Conclusion

Finally, we recognise that circumstances will exist where a company will use a mix of

competitive and cooperative behaviour. This will take us into the area of so-called ‘compe-

tition’. It is important to note that the use of game theory along with other tools and the

manager’s business experience could significantly improve his understanding of the dynamics

in business interactions and lead to higher quality and more informed decisions.
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LINEAR TIME INVARIANT THEORY

ADITI JAIN AND MANSI VERMA

Abstract. The purpose of this document is to introduce basic concepts of LTI Sys-

tem Theory, the representation and analysis of LTI systems through convolution, their

frequency response and application of LTI theory in acculumators and filters.

Introduction

What is a System? A system is a device that accepts an input signal x(t), processes it and

gives an output signal y(t). The concept of system is applicable in the fields of electrical,

economics etc. Physical devices such as filters, boilers, turbines are examples of systems.

For example, filter rejects unwanted frequencies in the input signal. Similarly, for a car, the

pressure on the accelator pedal is input signal and speed of the car is output signal.

x(t) −→ System −→ y(t)

Why are Systems used? Systems are used to perform signal processing. The effect of a

system on the spectrum of signal can be analyzed easily if the system is LTI. LTI system is

a system in which both linearity and time invariance holds. One of the primary reasons LTI

systems are amenable to analysis is that if we can represent the input to an LTI system in

terms of a linear combination of a set of basic signals, we can use superposition to compute

the output of the system in terms of its responses to these basic signals. LTI theory comes

from applied mathematics and has direct applications in technical areas such as seismology,

NMR spectroscopy etc. It investigates the response of a linear and time-invariant system

to an arbitrary input signal.

x1(t) + x2(t) −→ Linear −→ y1(t) + y2(t)

x(t− τ) −→ Time invariant −→ y(t− τ)

LTI systems are of two types :-

(1) Continuous time LTI system

(2) Discrete time LTI system

They are described by differential equation and difference equation respectively.

Impulse Response and Convolution

Impulse response h(t) or h[n] of an LTI is the response to an impulse. i.e., δ(t) −→
LTI −→ h(t). The significance of h(t) is that we can compute response to any input once

we know response to impulse. The output of the system is the convolution of the input to

the system with the help of system’s impulse response

i.e. δ(t) −→ LTI −→ h(t) (definition of Impuse Response)
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δ(t− τ) −→ LTI −→ h(t− τ) (Time Invariance)

x(τ)δ(t− τ) −→ LTI −→ x(τ)h(t− τ) (Scaling Property)∫ +∞
−∞ x(τ)δ(t − τ) dτ −→ LTI −→

∫ +∞
−∞ x(τ)h(t − τ) dτ = x(t) ∗ h(t) (Superposition

Principle)

y(t) =
∫ +∞
−∞ x(τ)h(t− τ) dτ is known as convolution integral in case of Continuous Time

and

y[n] =
∑+∞
i=−∞ x[i]h[n − i] is known as convolution sum in case of Discrete Time LTI

systems.

Frequency Response of LTI System

Let x(t) = eωjt be input into an LTI system with impulse response h(t. The output is

y(t) = h(t) ∗ x(t)

= h(t) ∗ eωjt
=
∫∞
0
h(τ)eωj(t−τ) dτ

= eωjt
∫∞
0
h(τ)eωj(−τ) dτ

= H(jω)eωjt

where H(jω) =
∫ +∞
0

h[τ ]e−ωjτ is known as Frequency Response.

Fourier Series Response of LTI System. Using LTI we can compute response to any

linear combination of complex exponentials or sinusoids. If a complex sinusoid were input

into an LTI system, then the output would be a complex sinusoid of the same frequency

that has been scaled by the frequency response of the LTI system at that frequency.

The Fourier Series of a periodic signal is

Cn =
∫ +∞
−∞ x(t)e−ωjnt dt

T and

x(t) =
∑+∞
i=−∞ Cne

ωjnt

Fourier Series Transform. Transform is used to convert signal from Time Domain to

Frequency Domain. Fourier Transform of the above signal is given by

X(jω) =
∫ +∞
−∞ x(t)e−ωjt dt

For Discrete Time it is given as

X[ejω] =
∑+∞
n=−∞ x[n]e−ωjn

As a result of the properties of these transforms, the output of the system in the frequency

domain is the product of the transfer function and transform of the input. Then the output

is obtained as a function of time by taking inverse Fourier Transform.

Laplace Transform. Continuous Time Fourier Transform provides us with representation

of signals as linear combination of complex exponential of form est with s = jω. However,

signals are not purely imaginary and can have real values as well. This leads to generalisation

of Fourier transform known as Laplace Transform. i.e. X(s) =
∫ +∞
−∞ x(t)e−st dt

z-Transform. For a Discrete time linear invariant system with impulse response h[n], the

response y[n] of the system to a complex exponential input of the form zn is

y[n] = H(z)zn, where H(z) =
∑+∞
n=−∞ h[n]z−n
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Figure 1

For z = ejω with ω real (i.e. |z| = 1), the summation in the above equation corresponds

to the discrete-time Fourier transform of h[n]. More generally, when |z| is not restricted to

the unity, the summation is referred to as the z-transform of h[n]. The z-transform of a

general discrete time signal x[n] is defined as X(z) =
∑+∞
n=−∞ x[n]z−n, where z is a complex

variable.

Properties of LTI System

Causality. A system is causal if the output at any time depends on values of the input at

only the present and past times. For example, motion of automobile is causal since it does

not anticipate action of the driver. For LTI system to be causal, y(t) must not depend upon

x(τ) for τ>t. For this to be true all coefficients of h(t− τ) that multiply values of x(τ) for

τ>t must be zero. This then requires that impulse response of causal LTI system satisfy

the condition h(t) = 0 for t<0.

Stability. A stable system is one in which small input signals lead to responses that do

not diverge. If an input signal is bounded then the output signal must be bounded.

∀x : |x| < U −→ |y| < V.

For LTI system to be stable, its impulse response must be absolutely summable i.e.
∫ +∞
−∞ |h(τ)| dτ <

∞. Looking at unit impulse response, allows us to determine certain system properties.

For example, Figure 2 shows the causal, stable, finite impulse response

y[n] = x[n] + 0.5x[n− 1] + 0.25x[n− 2]

Figure 2

Applications of LTI Theory

Accumulator. Consider a DT LTI system with an impulse response

h[n] = u[n]
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Using convolution the response to an arbitrary input x[n] is

y[n] =
∑+∞
k=−∞ x[k]h[n− k]

As u[n− k] = 0 for n-k<0 and 1 for n-k>0, this becomes

y[n] =
∑+∞
k=−∞ x[k]

i.e., it acts as a running sum or accumulator.

Inverse Filtering. Let’s assume that some naturally occuring process introduces unwanted

filtering to a signal s(t) and we are asked to design an inverse filter to remove the unwanted

filtering. The input to our inverse filtering system is the distorted signal d(t) = hd(t) ∗ s(t)
where hd is the impulse response function of the distorting system. We can express the

periodically extended input signal via its Fourier Series

de(t) =
∑+∞
m=−∞Hd(

2πjm
To

)Sme
j2πmt
To ,

where Hd(
2πjm
To

) is the laplace transform of impulse response of distorting system filter

and Sm the Fourier coefficients of the undistorted signal s(t). The output from our inverse

filtering system is then given by the Fourier series

ye(t) =
∑+∞
m=−∞ Ĥ( 2πjm

To
)Hd(

2πjm
To

)Sme
j2πmt
To

where Ĥ(jωm) is our Laplace transform of impulse response of inverse filter that we

wish to design. Since we want the output ye(t) to be equal to se(t) we then require that

Ĥ( 2πjm
To

)Hd(
2πjm
To

) = 1 =⇒ Ĥ( 2πjm
To

) = 1
Hd(

2πjm
To

)

It appears from the above equation that we have solved the problem, i.e., have designed

the necessary inverse filter. The problem is that we have only so much freedom in physically

building analog filters. These filters have to be constructed using physical components that

are subject to the laws of physics and have serious constraints placed upon them because of

this. For example, analog filters Ĥ(jωm) described by linear ODEs is in the form of a ratio

of polynomials

Ĥ(jωm) = Dx(jωm)H(jωm) = Dx(jωm)
D(jωm)

where Dx(jωm) is the characteristic polynomial of the differential operator relating the

standard and physical inputs to the system and where D(jωm) is the characteristic poly-

nomial of the system ODE. On the other hand, there is no guarantee that the distorting

filter Hd(
2πjm
To

) has such a mathematical form so that no exact solution may be possible.

An approximate solution is, of course, possible where we approximate the H−1d by the use

of polynomials.
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MATHEMATICS IN SOLVING CRIMES.

ANKITA TULSHYAN

Abstract. Small mathematics is typically perceived as a tough but important subject.

While its theoretical merit is easily appreciated, it is quite unfortunate that its vast

practical applications are not discussed enough. One exciting discipline where use of

mathematical skills goes unrecognized is in solving crimes. Imagine making a formula

for estimating the geographical location of a serial killer, or using probability theory to

solve a forgery case, making and cracking secret codes. This article attempts to provide

an introduction to a few such techniques which are successfully used in solving criminal

cases.

Introduction

Who has not read Sir Doyle’s ‘The Adventure of The Dancing Men’? Today famous

television series like NUMB3RS and SHERLOCK have made mathematics a seemingly more

compatible discipline with criminology, but still people fear and see mathematics as a distant

relative of criminology. Well, mathematics itself seems like a product of crime for many

people. With technology evolving rapidly in last few decades, crime rate has gone up

drastically as criminals are coming up with new ideas. As a result, we need to embrace new

methods to fight these ever increasing crimes. DNA profiling, Image Analysis, Probability

Theory, Game Theory, Statistics, Prime Number Theory, these are some among the many

sections which include mathematics and are used by various agencies to fight criminals.

We will be discussing briefly about some of the techniques used by various forces to catch

criminals.

Geographic Profiling

Imagine that 10 people are killed in your city, in the last 4 months, random people with

no connection, killed at random places, just the way of killing is same, which gives the idea

of murderer being a serial killer. At first it seems impossible to catch such a criminal, there

being no connection or pattern between different killings, but mathematics says a pattern

has to be there. This is the idea which was further worked upon and as a result a formula

for finding such a criminal was formed. Before undertanding how mathematics helps in

knowing the estimated location of such a criminal’s residence, let’s first understand, Geo-

graphic profiling. It is a method that analyzes the locations of a connected series of crimes

to determine the most probable area of the criminal’s residence. Mostly, it is used in cases

of serial murder or rape.

The leading developer of geographic profiling is Dr. Kim Rossomo. He is a former police

officer, who went on to take Ph.D in criminology. His thesis advisers, Paul and Patricia
67
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Brantingham, were pioneers in the development of mathematical models of criminal behav-

ior, particularly those that describe where crimes are most likely to occur based on where a

criminal lives, works, and plays. He did not want to study criminal behaviour, but wanted

to use actual data about the locations of crimes linked to a single unknown criminal as an

investigative tool. Working on it for a long time, he finally hit upon the idea and came up

with the formula which is discussed below.

At first, the formula seems to be a complex one , but it is easy to understand. Consider

a map divided into squares marked as (x,y), x denoting row and y denoting columns. The

formula takes input from the past crime locations and gives the probability of the position

of the serial criminal residing within a specific area by summation of the locations where

the criminal has committed the past crimes. The figure below is an example of how an area

generated by such a formula look like.

pi,j = k

totalcrimes∑

n=1

[
φi,j

(|Xi − xn|+ |Yj − yn|)f
+

1− φi,j(Bg−f )

(2B − (|Xi − xn|+ |Yj − yn|)g
] (1)

Where, B is the buffer zone area (the neighbourhood of a criminal residence), and

φij =

{
1, if (|Xi − xn|+ |Yj − yn|) > B

0, else
(2)
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φij is a characteristic function that returns 0 when a point is an element of the buffer

zone B, |Xi − xn|+ |Yj − yn| is the Manhattan distance between a point and the nth crime

site.

The constant k is empirically determined. Also, the variables f and g are chosen so that it

works best on the data of past crimes.

The main idea on which this formula works is that the probability of crimes first increases

as one move through the buffer zone away from the hot zone, but decreases afterwards.

With later refinements, the formula has become the principal element of a computer

program Rossmo wrote, called Rigel. Today, Rossmo sells Rigel, along with training and

consultancy, to police and other investigative agencies around the world to help them find

criminals. The formula has been applied to fields other than forensics also.

Estimating the time of death- Differential equation

A person is found dead in his locked apartment in South- Delhi early in the morning at

7:00 A.M., nobody knows the time of his death. We might say that it seems like there is

no way to find out his time of death and cause. However it is not true, the answer can be

found very easily. Here, mathematics and physics come to our aid to find an approximate

time of the person’s death. Using Newtons law of cooling, it is possible to form a differential

equation model to find the timing of the death of the person. So, lets first briefly understand

the Newtons law of cooling.

It states that the rate of cooling of an object is proportional to the temperature difference

between the object and its surroundings, provided that this difference is not too large.

Thus, the temperature of the body T (t) governed by Newton’s Law of Cooling satisfies the

following differential equation,

dT

dt
= k[T (t)− Ta(t)] (3)

Where k is a negative constant, Ta(t) is the ambient temperature, and in our case t is

the number of hours since the death of the person.

We already know the body was discovered at 7:00 A.M. The coroner measured its tempera-

ture, T1 at that time. One hour later another temperature, T2 was taken. The temperature

of the victim’s apartment was found to be constant at a temperature of 70°F. The given

differential equation can be solved to get,

T (t) = Ta + (T0 − Ta)e−kt, (4)

where T0 is the normal temperature of body, i.e, 98.6°F. Thus the equation in our case

reduces to-
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T (t) = 70 + (28.6)e−kt (5)

Let tc be the time when coroner first checks the temperature of the body, thus we have

the two equations,

72.5 = 70 + (28.6)e−ktc (6)

and

72 = 70 + (28.6)e(−ktc+1) (7)

Solving the two equations we get value,

k = - (0.233)

and, tc = 10.92 hours

From this calculated value we can say that the man died about 11 hours before 7:00

A.M., which would be around 8:00 P.M., the previous evening. Thus, the application of

mathematics and physics together, gives us the estimated time of the victim’s murder.

Mathematics in Courtroom

Mathematics is not only used in finding criminals but also in courtrooms. It can be

used to check the reliability of DNA results, recognizing the criminal using the technique

of Image Enhancement, detecting a forgery case with the help of probability theorems, and

many more. To illustrate this, let’s discuss a forgery case which was solved with the aid of

mathematics.

In the 19th century, Benjamin Peirce was one of the leading mathematics professor at Har-

vard University, and his son, Charles Sanders Peirce, was also a brilliant scholar. It was a

forgery trial involving the estate of Sylvia Ann Howland. The case was to check the au-

thenticity of her signature on the will produced by her niece Hetty, which made Hetty the

sole benefactor of Sylvia’s wealth. In most forgery cases, someone attempts to duplicate

the signature, so by showing the dissimilarities between the two signatures the case can be

solved but in this case the forgery was simply too good!

Here are the two signatures, They devised a method to compare and express the agreement
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between any two signatures as a score. To determine this score, they decided to use down-

strokes; there are thirty of them in each signature.

They obtained a set of forty-two authentic signatures of Sylvia. For forty-two signatures

there are
(42×41)

2 ≡ 861

ways to select a pair of signatures to compare. For each of these 861 pairs, they deter-

mined the number of downstrokes that coincided. They found a total of 5,325 coincidences

among the 25,830 (861 x 30) comparisons of downstrokes. That meant that about one out

of five comparisons was judged a perfect match, occurring with probability,

5325
25830 = 0.206156

The rest of their analysis was mathematical, or more specifically, statistical. Assuming

these coincidences occur independently, Peirce used the product rule to find the chance of

all thirty downstokes being identical, i.e.

(.206156× .206156× .206156× ...)[30times]

This is approximately 1 in 375 trillion.

Professor Peirce summarized his findings in this way: “So vast improbability is practically

an impossibility. Such evanescent shadows of probability cannot belong to actual life. They

are unimaginably less than those least things which the law cares not for. ... The coincidence

which has occurred here must have had its origin in an intention to produce it. It is utterly

repugnant to sound reason to attribute this coincidence to any cause but design.”

Surely not surprising, the court ruled against Hetty Robinson.

A modern mathematician may solve such a case today with different statistics with more firm

ground and less assumptions like the independency of the occurrence of two co-incidental

downstokes, but still Peirces method opened a new way for future mathematicians.

Conclusion

Thus, we learnt about some of the interesting techniques used for catching a criminal,

which use mathematics. Mathematics has many more such wonderful applications.
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