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PREFACE

After witnessing the naissance, growth and success of our journal Éclat, we have immense
pleasure in presenting its Volume IV. Our readers expect a high standard of exposition, so
Éclat is a compilation of papers based on historical and new results, speculations and defin-
itive treatments, broad developments and explorations by the students as well as the faculty
members. Following a structured approach, we have divided the journal into four sections-
History of Mathematics, Rigour in Mathematics, Extension of Course Contents and Inter-
disciplinary Aspects of Mathematics. This volume will stimulate further discussion and
additional research in various realms of Mathematics, enabling a range of empirical studies
on the topical concepts covered.

We hope in this way we keep our readers, as it were, on a level with the progressive state
of Mathematics. Like the previous volumes, the idea of the journal has been promulgated to
other departments as well as colleges. We hope such a response continues and hence, leads
our readers to feel a greater interest in the study of Mathematics, helping them to learn and
appreciate it.

The success and final outcome of Éclat involved a lot of guidance, research and efforts.
The discursive compilation has evolved after rigorous perusing. As the editors of this jour-
nal, we owe profound gratitude to the entire department, which has been so supportive and
involved throughout. And our heartfelt thanks to our faculty advisors for their valuable sup-
port and continued encouragement and discussion at all stages of the gestation of the journal.

We hope that our readers deem the journal beneficial and worthwhile, and find it instru-
mental in honing their skills in doing individual research.

Editorial Team:

Sruthi Sekar
Kritibha Rai
Megha Baid
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History of Mathematics

Mathematics is the oldest academic discipline involving stimulating and intriguing con-

cepts. It is far beyond the ken of one individual, and to make any contribution to the

evolution of ideas, an understanding of the motivation behind the ideas is needed. This

section covers the genesis of mathematical ideas, the stream of thought that created the

problem and what led to its solution. The aim is to acquaint the readers with histori-

cally important mathematical vignettes and make them inured in some important ideas of

Mathematics.
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ISRAEL MOISEEVICH GELFAND

(1913-2009)

EDITORIAL TEAM

Israel Gelfand was a major figure in mathematics for seven decades. His research ranged

over most of pure mathematics, including algebra, analysis, and geometry. He also worked in

mathematical biology, opening up the field of integral geometry, a topic that is fundamental

to medical scanners. He was an incomparable teacher and made significant advances in

every field that he touched.

Gelfand was born on 2 September 1913, to Jewish parents in the small town of Okny

(now Krasni Okny) to the north of Odessa in southern Ukraine, which was then a part of

the Russian empire. In 1930 he moved to Moscow to complete his secondary education.

However, he was not permitted to enroll as an undergraduate, having (according to some

sources) been expelled from school because his father, a miller, was considered to be a

capitalist. Israel took a part-time job as doorkeeper at the Lenin Library and taught evening

classes on mathematics. The work made it possible for him to attend mathematics courses

at Moscow State University.

He showed such talent that Andrei Kolmogorov, the leading Soviet mathematician of the

period, took him on as a postgraduate student. His 1935 PhD thesis was in the relatively

new area of functional analysis, where the ideas of calculus are extended from finitely many

variables to infinitely many. One practical application is to partial differential equations,

the mathematical physicist’s favourite tool for describing the natural world. Another is the

mathematical formulation of quantum mechanics.

Gelfand was appointed to the Steklov Mathematical Institute and taught at the university,

but lost both positions temporarily through antisemitism. He was elected a corresponding

(low-status) member of the Soviet Academy of Sciences, but it was more than 30 years before

he was made a full member. His seminar series, run independently of the university and

open to anybody, ran for nearly 50 years and is famous throughout the mathematical world.

He moved to America in 1989, first to Harvard University, Cambridge, Massachusetts, and

then Massachusetts Institute of Technology, then settling at Rutgers University, New Jersey.

The heart of Gelfand’s research was representation theory, a formal setting for symmetry,

a concept of central importance in mathematics and physics. A symmetry of an object is a

transformation that preserves its structure, and the collection of all such transformations is

the object’s symmetry group. The physical world, at subatomic level, is highly symmetric: if

you change an electron’s direction of spin, or its electric charge, the laws of physics still work

the same way. Representation theory studies all the contexts in which a particular symmetry

group can arise. Its applications include subatomic particles and pattern formation - why

snowflakes are six-sided, and why tigers have stripes but leopards have spots.
3
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The most important types of symmetry are the “classical groups”, a typical example

being the group of all rotations of space. Gelfand solved many fundamental questions about

classical groups, using a mixture of algebraic and geometric methods. His interests went

beyond mathematics into theoretical and experimental science. In 1958, when his son,

Aleksandr, contracted leukaemia, he started applying mathematics to cell biology, setting

up the Institute of Biological Physics of the Russian Academy of Sciences.

Some of his discoveries have applications that are important for everyone: medical scan-

ners. Doctors routinely use several different kinds of scanner. CT scanners, for example, use

beams of x-rays to obtain a three-dimensional image of the body’s internal organs. This is

a bit like holding a semi-transparent object up to the light and using the resulting shadows

to work out its true shape. The first steps in this area were taken in 1917 by Johann Radon.

Gelfand developed Radon’s ideas extensively, founding an entire field of mathematics, now

called integral geometry. His ideas are vital to today’s medical imaging methods.

Gelfand received many awards. The Soviet Union awarded him the Order of Lenin three

times. He won the Wolf prize (comparable to a Nobel) in 1978, and the Kyoto prize (for

“significant contributions to the progress of science, the development of civilisation, and the

enrichment and elevation of the human spirit”) in 1989. He was elected to innumerable

academic bodies, including the Royal Society and the US National Academy of Science.

He was also a great teacher. He set up a distance-learning school for mathematics in the

Soviet Union, and a similar one in the US in 1992. He considered teaching and research to be

inseparable, and was equally comfortable talking to schoolchildren or his research colleagues.

He supervised 22 PhD students, several of them now outstanding mathematicians in their

own right.

The Russian Academy of Sciences together with the Moscow Mathematical Society and

Independent University of Moscow is organizing an international conference dedicated to the

centenary of Israel Gelfand and another conference dedicated to the centennial of Gelfand

will be held in the US.

References

[1] Ian Stewart, The Guardian, Sunday 8 November 2009 18.13 GMT.
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AMALIE “EMMY” NOETHER

AASTHA BHATIA AND JASMINE BHULLAR

Abstract. Traditionally, mathematicians are considered to be men. This, however, is

erroneous. Women have contributed to mathematics as much as their male counter-

parts. One such unmerited women mathematicians is German-born Amalie “Emmy”

Noether. Emmy Noether revolutionized the areas of abstract algebra and theoretical

physics. Even Einstein eulogized her in a letter to New York Times as “the most signif-

icant creative mathematical genius.” Her groundbreaking work in abstract algebra and

physics undergird much of todays vanguard research in physics, including the search for

‘Higgs Boson.’ Its time to bring this brilliant theorist out of anonymity and celebrate life

and achievements of this great mathematician who with her sheer will and unshakable

love for numbers overcame severe handicaps.

EARLY LIFE AND FAMILY BACKGROUND

Noether’s siblings

Emmy Noether Circa 1910

Amalie “Emmy” Noether was born in Erlangen Bavaria, Germany. She was the daughter

of Max Noether, a distinguished mathematics professor at University of Erlangen and Ida

Amalie Kaufmann, who belonged to a wealthy Cologne family. Both Emmy’s parents were of

Jewish origin and Emmy was the eldest of their four children. Her younger siblings were all
5
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boys named Alfred, Fritz, and Gustav Robert. Fritz became a quite respected mathematics

professor like his father. Some might suspect her mathematical talent was in her genes.

EDUCATION

Emmy had a conventional upbringing, attending the Hohere Tochter Schule in Erlangen

till she turned 18, when she was certified as a teacher in French and English at the

Institute for Education and Instruction of Females. But her interests soon turned towards

mathematics. Being a woman, she could not enroll in the university formally, but was

allowed to audit at University of Erlangen where her father taught. She took her final

exams and was granted an equivalent of Bachelor’s degree. She then went to graduate

school at University of Gottingen. Gottingen was at that time the centre of the

mathematical universe. In 1904, she returned to University of Eralengen, where she

prepared her dissertation under Paul Gordon and was awarded her doctorate (summa cum

laude) in 1907.

PROFFESIONAL LIFE

The University of Erlangen did not hire Emmy as they had a policy against women

professors. She helped her father at the Mathematics Institute in Erlangen and meanwhile

did her own research. Soon, she began to publish papers on her work. In 1908, she was

elected to the Circolo Matematico di Palermo, then in 1909 she was invited to become a

member of the Deutsche Mathematiker Vereinigung. Till 1915, Noether worked at the

Mathematical Institute of Erlangen without pay or title. In 1915, she joined the

Mathematics department at the University of Gottingen and started working with Klein

and Hilbert on Einstein’s general relativity theory. Noether was only allowed to lecture

under Hilbert’s name, as his assistant, although still without a salary. Much of her work

appears in papers written by colleagues and students, rather than under her own name.

She became an “associate professor without tenure” in 1922 and began to receive a small

salary. She was invited to address the International Mathematical Congress twice. In

1933, Emmy was fired from the University of Gottingen with the beginning of the Nazi

rule in Germany. She continued to meet her students for some time but after receving a

grant to become a guest professor at Bryn Mawr College she moved to Pennsylvania,

U.S.A. According to Van der Waerden’s obituary of Emmy Noether, she did not follow a

lesson plan for her lectures. Rather, she used her lectures as a spontaneous discussion time

with her students. A promising start to a new career was cut short by her untimely death

due to complications after a uterine surgery in 1935.

ASSOCIATION WITH EINSTEIN

Emmy did work on the theory of invariants, whose main importance was seen in the

framework of Einstein’s theory of relativity. Her paper appeared in 1918. Einstein wrote

to Hilbert in a letter of May 24, 1918: “Yesterday I received from Miss Noether a very

interesting paper on the formation of invariants. I am impressed that one can handle those

things from such a general viewpoint. She seems to understand her job.”
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Figure 1. Emmy Noether circa 1932

In 1933, when Emmy was fired by the Nazis from the University of Gottingen, her brother,

Fritz Noether, now working in Soviet Union, urged her to join him. But, Albert Einstein

convinced the Rockefeller Foundation to match a grant from the Emergency Committee to

aid displaced German Scholars and Emmy was granted a one year instructor position in

Bryn Mawr College in Pennsylvania.

Two years later, when Emmy died, the New York Times printed a letter that designated

her as “The most significant creative mathematical genius thus far produced since the

higher education of women began.” The letter was signed by Albert Einstein.

HER CHARACTER AND PERSONA

Sociable: Her friends and colleagues remember her as a happy woman with a robust

sense of humour. Her heart knew no malice and she did not believe in evil. Emmy Noether

never married. She cared deeply about her students and considered her students as family.

In his memorial speech at Emmy’s funeral, Hermann Weyl said: “She was warm like a loaf

of bread, there radiated from her a broad, comforting, vital warmth. A tea at her

apartment was always pleasurable.”

Dedication towards mathematics: French Mathematician Poisson once remarked:

“Life is good for only two things, discovering mathematics and teaching mathematics.”

Emmy would have seemed to agree. She lived for mathematics and cared nothing for

housework or possessions. As Hermann Weyl recalled in his speech at her funeral “She had

a particular handkerchief which she had a way of jerking around, very energetically while

explaining something.” Appearance-conscious students cringed as she retrieved the

handkerchief from her blouse and ignored the increasing disarray of her hair during a

lecture.

A distinguished algebraist, Olga Taussky-Todd described a luncheon during which

Noether, wholly engrossed in a discussion of mathematics, “gesticulated wildly” as she ate

and “spilled her food constantly and wiped it off from her dress, completely unperturbed.”

Perseverence and never say die attitude: The most noticeable aspect of her

personality was her persistence in the face of the tremendous obstacles and barriers in her

path to become one of the greatest algebraists.

Noether had two strikes against her: First, she was a woman at a time when education for

women was severely limited. Most German universities did not enroll female students or
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hire female professors. Second, she was Jew. The Jews in Nazi Germany suffered

appallingly after January 1933. Nevertheless with her spirit and will she made great

contributions to Mathematics.

CONTRIBUTION TO MATHEMATICS

Emmy Noethers scientific production fell into three clearly distinct epochs:

• The period of relative dependence, 1907-1919;

• The investigations grouped around the general theory of ideals 1920-1926;

• The study of the non-commutative algebras, their representations by linear trans-

formations, and their application to the study of commutative number fields and

their arithmetics.

Emmy Noether’s mathematics was abstract, original and deep. Her contributions to the

theory of algebraic invariants and the theory of ideals in rings are very significant. She laid

down the broad foundations of the modern abstract theory of ideals and also a great deal

more in modern algebra.

Emmy Noether’s first piece of work when she arrived in Gottingen in 1915 is a result in

theoretical physics sometimes referred to as Noether’s Theorem, which proves a relationship

between symmetries in physics and conservation principles. It was her work in the theory

of invariants which led to formulations for several concepts of Einstein’s general theory of

relativity.

CLOSING NOTE

Among mathematicians, Emmy Noether is consistently ranked among the most famous

mathematicians of the 20th century and recognized along with Newton, Gauss, Fourier,

Leibnitz, as one of the greatest of all time for her work in theoretical physics and

mathematics, which both contribute significantly to studies today. The outstanding theme

of Emmy’s life is that she pursued her goals with single-minded determination and not

much fuss. The approach as developed by Emmy Noether and her pupils has come to be

known as the ‘Noether School’. It has been rightly said that “her mathematical originality

was absolute beyond comparison” (by B. L. van der Waerden) and “Noether changed the

face of algebra” (by Hermann Weyl). Noether’s death was somewhat sudden. Her legacy

in mathematics, however, remains.
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PARACONSISTENT MATHEMATICS

HIRANMAYEE RAJAN, SANJANA GUPTA, TANISHA

Abstract. There are two schools of thoughts regarding mathematics, classical mathe-

matics and paraconsistent mathematics. Classical mathematics believes that contradic-

tions cannot exist in mathematics, and every theory is both complete and consistent.

Paraconsistent mathematics, on the other hand, considers the possibility of existence of

contradictions in mathematics. It is this part of mathematics that we will address in

our article. We will discuss inconsistencies in three fields of mathematics - Set theory,

Calculus and Geometry, by discussing paradoxes and giving relevant examples.

Introduction

Hand with Reflecting Sphere, M.C. Escher

Paraconsistent mathematics is a system of math-

ematics in which it is possible for contradictions to

exist. A statement ‘A’ and its negation ‘not A’ can

both be true. Basically, paraconsistent mathematics

accepts inconsistent theories (theories which contain

contradictions). Formal logic is used to contain these

contradictions and allow theories to remain coher-

ent. This system of mathematics arose in response

to paradoxes like Russell’s Paradox and Liar’s Para-

dox.

Motivation and Foundation. In 1920, David

Hilbert tried to develop a set of axioms (that were

both consistent and complete) which could be used to

prove any true statement in mathematics. However,

Gödel’s incompleteness theorems showed that these

axioms were impossible to develop and laid the foun-

dation for work in the field of paraconsistent mathe-

matics. Following are Gödel’s Incompleteness Theo-

rems:

• Gödel’s first incompleteness theorem states

that in any given system, there will always

be some true statements that cannot be proved.

• Gödel’s second incompleteness theorem states that a system can prove its consis-

tency if and only if it is inconsistent.

9
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Convex and Concave, M.C. Escher

For example, let ‘T’ be a formal theory i.e., a

system of mathematics based on a collection of

axioms. Let ‘G’ be a statement such that ‘G’

cannot be proved in the theory ‘T’. If this state-

ment is true, then there is at least one sentence

in ‘T’ which cannot be proved (namely ‘G’),

making ‘T’ incomplete. However, if ‘G’ can be

proved in ‘T’, we get a contradiction as ‘G’ is

provable, but by virtue of its content, it also

cannot be proven.

Therefore, one has to choose between incom-

pleteness and inconsistency. Gödel showed that

a sentence such as ‘G’ can be created in every

theory. So, mathematics must always either be

incomplete or inconsistent.

The inconsistency of mathematics is best seen in paradoxes. A paradox is a statement

or proposition that, despite correct reasoning, leads to a conclusion that is contradictory.

It is an argument that produces an inconsistency. Some of the famous paradoxes are the

Liar’s Paradox and the Barber’s Paradox.

Ascending, Descending, M.C.Escher

Liar’s Paradox:

“This statement is false.” If the state-

ment is true, then the statement must also

be false. Similarly, if the statement is

false, then it implies that the statement is

true.

Barber’s Paradox:

“The Barber only shaves those people in town

who do not shave themselves.” Then who shaves

the barber?

If the barber shaves himself, then he must also

not shave himself. However, if he does not shave

himself, then he ought to shave himself – a con-

tradiction.

Inconsistency in Set Theory

Set theory, often called the foundational system of mathematics, is a branch of mathe-

matics that studies sets. An example of set theory defined informally i.e., without the use



PARACONSISTENT MATHEMATICS 11

of formal logic, is Näıve Set Theory. Näıve set theory is filled with inconsistencies. This is

best highlighted by Russell’s Paradox. Russell’s Paradox was put forth by Bertrand Rus-

sell, a famous British philosopher, logician, mathematician and historian. Before discussing

Russell’s Paradox, we’ll briefly outline Näıve Set Theory.

Drawing Hands, M.C.Escher

Näıve Set Theory. It consists of the following

3 axioms:

• Axiom of Extensionality: Given any

set A and any set B, if for every element

x, x is a member of A if and only if x is

a member of B, then A is equal to B.

• Axiom of Abstraction: Any collec-

tion of objects that can either be listed

or described by some predicate consti-

tutes a set.

• Axiom of Choice: Let C be a collec-

tion of non-empty sets. Then we can

choose a member from each set in that collection. In other words, there exists a

function f defined on C with the property that, for each set S in the collection, f(S)

is a member of S.

A set may contain other sets as its members. A set may also contain itself. For example,

consider the set ‘T’ containing all things that are not triangles. Since ‘T’ is not a triangle,

it contains itself.

Waterfall, M.C.Escher

Russell’s Paradox. “Let R (Russell set)

be the set of all sets that are not mem-

bers of themselves.” Is R a member of

R?

Interpretation:

If it contains itself, it is by definition a set

that does not contain itself – a contradic-

tion. If it does not contain itself, it is

a set that does not contain itself and so

should contain itself – again a contradic-

tion.

Alternate Theory:

To avoid contradictions and paradoxes, classi-

cal mathematicians adopted a different stance.

They accepted a somewhat complex version of

set theory called Zermelo-Fraenkel Set Theory (ZFT). ZFT discards the Principle of



12 HIRANMAYEE RAJAN, SANJANA GUPTA, TANISHA

Abstraction, and replaces it with eight other axioms. Pre-existing sets are used to construct

new sets via the set building rules laid out in ZFT. The sets thus built are given ranks based

on the number of times the set building rules are used.

For example, let’s start with V0.

Then, the set with the next rank V1 = P(V0),

where P is the power set.

Belvedere, M.C.Escher

Similarly, V2 = P(V1).

In general, Vn+1 = P(Vn).

The basic idea is that every set must be a

member of a set Vα for some α. So, in

ZFT it is impossible to create a set of all

sets.

Reconciliation of Russell’s Paradox:

In ZFT, Russell set cannot exist and thus

Russell’s paradox is avoided. To cre-

ate Russell set, Russell set is re-

quired, so building it using the ax-

ioms of ZFT is impossible. In terms

of rank, Russell set would need to be

of some rank n, but also of rank n +

1 (and n + 2 and n + 3 and so forth)

because to be created it needs to be of

a higher rank than itself. As this is

not possible, Russell set cannot exist in

ZFT.

Interestingly, ZFT based on ad hoc axioms was later proved to be highly inconsistent.

Incompleteness In Set Theory

Cantor’s Continuum Hypothesis highlights the incompleteness in set theory. It shows us

that Näıve Set Theory cannot answer some fundamental questions about infinity. Cantor’s

Continuum Hypothesis can be stated as follows:

“There is no infinite set with a cardinal number between that of the “small” infinite set

of integers ℵ0 and the “large” infinite set of real numbers c (the ‘Continuum’),

Symbolically, the Continuum Hypothesis is that ℵ0 <c.”

Hence, we see that Näıve Set Theory is both incomplete and inconsistent.
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Inconsistency in Calculus

Infinitesimals are an integral part of calculus. Yet, it was pointed out that infinitesimals

were being used inconsistently in equations. For example, suppose we are differentiating the

polynomial f(x) = ax2 + bx+ c. In order to compute its derivative, we have

f(x+ ε)− f(x)

ε
=
a(x+ ε)2 + b(x+ ε) + c− (ax2 + bx+ c)

ε

=
2axε+ aε2 + bε

ε
= 2ax+ b+ aε.

So, f ′(x) = 2ax + b, since ε is an infinitesimal. It is pointed out that ε marks a small but

non-trivial neighbourhood around x, and as f(x+ ε)− f(x) can be divided by ε, so ε

is not zero. Nevertheless, by the end ε simply disappears. Hence, we see that Calculus in

its original form was outright inconsistent.

Inconsistency in Geometry

Impossible Objects. These are objects that can be drawn but can never be created in

3D. They are of 4 types:

Impossible Cube:

This diagram shows the most common representation of a cube.

However, another interpretation of this cube is the impossible

cube.

In an impossible cube, as one can see, the edges cross each other in an im-

possible manner.

Penrose Traingle:

The Penrose triangle is an impossible equilateral triangle. It consists of

three perpendicular sides.
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Blivet:

A blivet, also called Devil’s Fork is an impossible object which appears to

have two rectangular prongs on the right and three cylindrical prongs on

the left.

Penrose Stairs:

Penrose stairs is an impossible object in which the stairs turn at an angle

of 90° four times, yet the staircase forms a continuous loop. It is neither

ascending, nor descending.

This impossible object is widely represented in pop culture, the most famous

example being its use in the movie ‘Inception’.

Relativity, M.C.Escher

Depiction in Art. Inconsistencies in geometry

have been represented several times in art. Some

of the best examples are the works of M.C. Es-

cher. M.C. Escher was a Dutch artist who is

known for his mathematically inspired art and

portrayal of impossible reality. His artworks

have been depicted alongside this article.

Conclusion

As one can see, mathematics is filled with

inconsistencies. These inconsistencies span all

branches of mathematics from calculus to geom-

etry to set theory. In conclusion, mathematics

is not perfect.
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FOUR DIMENSIONAL SPACE

SRUTHI SEKAR

Abstract. This paper intends to induce the thought of the existence of a fourth spatial

dimension and helps in visualizing it. There is an analogy between the way we move

from 2nd to 3rd dimension, and the transition from 3rd to 4th dimension. This analogy

is discussed briefly. One particular four dimensional object, tesseract, has also been

discussed in detail.

Introduction

In mathematics, four-dimensional space (“4D”) is an abstract concept derived by gen-

eralizing the rules of three-dimensional space. Algebraically it is generated by applying

the rules of vectors and coordinate geometry to a space with four dimensions. In the 4th

dimension, there would virtually be no limits. Through mathematics we know a great deal

about the 4th dimension. Still, we cannot imagine it. Although we do have rational access

to 4th dimension, it is non-existent for our senses and for our consciousness.

History

The possibility of spaces with dimensions higher than three was first studied by mathe-

maticians in the 19th century. In 1827, Mobius realized that a 4th dimension would allow

a 3D form to be rotated onto its mirror-image (just like we need the 3rd dimension to

rotate a 2D object like a square onto its mirror image. This can be visualized by look-

ing at a tessract), and by 1853 Ludwig Schlafli had discovered many polytopes in higher

dimensions.

Higher dimensions were soon put on firm footing by Bernhard Riemann’s 1854 Ha-

bilitationsschrift, in which he considered a “point” to be any sequence of coordinates

(x1, x2, ..., xn). The possibility of geometry in higher dimensions, including four dimensions

in particular, was thus established.

One of the first major expositors of the 4th dimension was Charles Howard Hinton,

starting in 1880 with his essay “What is the Fourth Dimension?” published in the Dublin

University magazine. He coined the terms tesseract, ana and kata in his book A New

Era of Thought, and introduced a method for visualising the 4th dimension using cubes

in the book Fourth Dimension.

Another important contribution to this field was made by Alicia Boole Stott, a woman

mathematician, in the 19th century. The main idea behind Boole Stott’s method was to

transform a 4D problem into a 3D one, making it possible to use our intuition on the 3D
15
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space to solve a 4D problem. Her results on this topic are collected in her publication of

1900, “On certain series of sections of the regular four-dimensional hypersolids.”

In 1908, Hermann Minkowski presented a paper consolidating the role of time as the

4th dimension of spacetime, the basis for Einstein’s theories of special and general

relativity.

Vectors

Mathematically, a 4D space is simply a space with four spatial dimensions, i.e., a space

that needs four parameters to specify a point in it. For example a general point might have

position vector a, where, a =




a1
a2
a3
a4


 .

This can be written in terms of the four standard basis vectors {e1, e2, e3, e4}, given by:

e1 =




1

0

0

0


 ; e2 =




0

1

0

0


 ; e3 =




0

0

1

0


 ; e4 =




0

0

0

1


 .

So, general vector a is a = a1e1 + a2e2 + a3e3 + a4e4 .

Visualizing the fourth dimension

Firstly, if we consider a 2D world, it is impossible to go up or down. A 3D world implies

that there are infinite planes adjacent to this 2D world. A 3D entity can see across a

multitude of 2D planes and move up and down with ease. In a 3D world, we can move

horizontally and vertically but not in the 4D direction. A 4D world implies that there are

infinite 3D spaces adjacent to our 3D world. We can only see one, the one we are in. If we

could move 4D+ for a while and go back 4D− for the same while, we would end up in the

same place, we didn’t go up, down, left, right, forward or backward, we went across. We
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can imagine moving across several 3D rooms similar to ours, but each of them is actually a

different 3D space. A 4D entity is able to see across a multitude of 3D spaces.

To understand easily, we can imagine a society of 2D beings, which are conscious of only

2 dimensions. Let us further imagine that these “flatlanders” live on the surface of a large

sphere. Can they know this? If they are mathematically trained, they can measure that the

sum of the interior angles of large triangles clearly exceeds the 180°,which is never expected

in a flat Euclidean plane. They would have to conclude that their 2D space is not flat,

but curved. From that they could deduce that their perceived 2D world is embedded in a

reality of at least 3 dimensions. This does not imply that they can really imagine the 3rd

dimension, but they would at any rate have proved its existence.

We ourselves are in an analogous situation: the space that we can habitually imagine

has 3 dimensions. As we are sure that it is curved, we are also certain that our perceived

3D-space is embedded in a reality of at least 4 dimensions.

An object in 4th dimension consists of four units. For example, a hypercube has a length,

width, height and a 4th dimension that is perpendicular to all three of the other units. If

we can visualize stacking cubes into this 4th dimension, we create a hypercube.

Notations and Terms

In the familiar 3D space that we live in there are three coordinate axes usually labeled x,

y, and z with each axis orthogonal (i.e., perpendicular) to the other two. The six cardinal

directions in this space can be called up, down, east, west, north and south.

Positions along these axes can be called altitude, longitude, and latitude. Lengths mea-

sured along these axes can be called height, width, and depth.

Comparatively, 4D space has an extra coordinate axis, orthogonal to the other three,

which is usually labeled w. To describe the two additional cardinal directions, Charles

Howard Hinton coined the terms ana and kata, from the Greek words meaning “up

toward” and “down from”, respectively. A length measured along the w axis can be

called spissitude, as coined by Henry More.

Geometry

The geometry of a 4D space is much more complex than that of a 3D space, due to an

extra degree of freedom.
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• In 3-dimensions, there are polyhedra made of 2D polygons.

In 4-dimensions, there are polychora (4-polytopes) made of polyhedra.

Tetrahedron

(4 faces)
Cube

(6 faces)

Octahedron

(8 faces)

Dodecahedron

(12 faces)

Icosahedron

(20 faces)

• In 3-dimensions there are five regular poyhedra known as the Platonic Solids.

In 4-dimensions, there are 6 convex regular polychora, the analogues of the Platonic

Solids.

5-cell 8-cell 16-cell 24-cell 120-cell 600-cell

• In 3-dimensions, a circle may be extruded to form a cylinder.

In 4-dimensions, a sphere may be extruded to obtain a spherical cylinder (a cylinder

with spherical caps), and a cylinder may be extruded to obtain a cylindrical prism.

• In 3-dimensions, curves can form knots but surfaces cannot, unless they are self-

intersecting. In 4 dimensions however, knots made using curves can be trivially
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untied by displacing them in the 4th direction, but 2D surfaces can form non-trivial,

non-self-intersecting knots in the 4D.

A picture of Klien Bottle is shown on previous page. It is an example of a knotted

surface in 4D. By adding a 4th dimension to the 3D space, the self intersection can

be eliminated. To understand this, we can consider an analogy. If we consider a

self-intersecting curve on the plane, we can eliminate the self-intersections by lifting

one strand off the plane.

Tesseract- A four dimensional analog of a cube

The tessaract, also called an 8-cell or regular octachoron or cubic prism, is the

four-dimensional analog of the cube. A generalization of the cube to dimensions greater

than three is called a “hypercube”. The tesseract is the four-dimensional hypercube, or

4-cube.

The word tesseract was coined and first used in 1888 by Charles Howard Hinton in his book

“A New Era of Thought”, from the Greek τεσσερεις ακτινεζ (“four rays”), referring to the

four lines from each vertex to other vertices.

Geometry: Just like we obtain a cube by folding its 6 faces, which are all squares, we

obtain a hypercube (tesseract) by folding its 8 cells, which are cubes.

We begin with eight cubes forming a cross-like shape. Some faces are partially removed to

make the interior structure easier to see. The central (yellow) cube will be the bottom of

the hypercube, and the purple one will be the top. The remaining six cubes form the faces

of the hypercube that join the bottom to the top. As these begin to fold up in the fourth

dimension, we see their shadows become distorted in three dimensions (as one face of the

cubes moves closer to the light source, its shadow get larger). Eventually, the faces of the

cubes come together and are joined, just as the edges of the squares that form a cube are

glued when they are folded together. This leaves just the top remaining to fold into place.
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As the top closes in to join the six other faces, we are left with the well-known “cube within

a cube” view of the hypercube in perspective. A tesseract has 24 faces, 32 edges, 16 vertices

The Hypercube

as linked cubes
Stereographic Projection

of Hypercube Cube-first

and 8 cubical cells. Since each vertex of a tesseract is adjacent to four edges, the vertex

figure of the tesseract is a regular tetrahedron. Three cubes and three squares intersect at

each edge. There are four cubes, six squares, and four edges meeting at every vertex.

The coordinates of corner points of a tesseract are : (1,1,1,1), (1,1,1,0), (1,1,0,1), (1,1,0,0),

(1,0,1,1), (1,0,1,0), (1,0,0,1), (1,0,0,0), (0,1,1,1), (0,1,1,0), (0,1,0,1), (0,1,0,0), (0,0,1,1),

(0,0,1,0), (0,0,0,1), (0,0,0,0).

A Wire model of Tesseract in 3D space. Its coordinates are marked.
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REPRODUCING KERNEL HILBERT SPACES

MAHESH KUMAR AND H.B.SAHANA

Abstract. In functional analysis, a reproducing kernel Hilbert space (RKHS) is a

Hilbert space of functions in which point-wise evaluation is a continuous (bounded) lin-

ear functional. This article explains the basic concepts and introduces to the theory of

reproducing kernel Hilbert spaces and attempts to shed light on some of the applications

of this field of mathematics.

Introduction

The topic of reproducing kernel Hilbert spaces (hereafter abbreviated as RKHS) was

used for the first time by S.Zaremba in 1907, while working on boundary value problems.

He introduced, in a particular case, the kernel associated with a class of functions and

stated its reproducing property. But he did not develop any theory nor give any particular

name to the kernels he introduced. In 1909, J.Mercer examined functions that satisfy

the reproducing property in the theory of integral equations, and called such functions

positive definite kernels. The main idea of reproducing kernels appeared in the dissertations

of three Berlin mathematicians, G.Szego (1921), S.Bergman (1922) and S.Bochner (1922). In

particular, Bergman introduced reproducing kernels in one and several variables for the class

of harmonic and analytic functions, and called them kernel functions. In 1935, E.H.Moore

examined the positive definite kernels under the name of positive Hermitian matrix. The

credit for systemising the theory of reproducing kernels, however, goes to N.Aronszajn in

1948, whose classic paper on the subject is still referred to.

Prerequisites

(i) An inner product space (or pre-Hilbert space) is a vector space X with an inner

product 〈 , 〉 defined on X. A Hilbert space is a complete inner product space;

complete in the metric defined by the inner product

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉.

We will consider Hilbert spaces over either the field of real or complex numbers. We

will use F to denote either R or C , so that we may state results which are true for

both simply by using one notation.

(ii) A linear functional f is a linear operator with domain in a vector space X and

range in the scalar field F of X. A bounded linear functional f on a Hilbert space

X is a linear functional for which there exists a real number c such that

|f(x)| ≤ c‖x‖ for all x ∈ X.
23
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(iii) Given a set X, if we equip the set of functions from X to F, denoted by F(X, F),

with the usual operations of addition

(f + g)(x) = f(x) + g(x),

and scalar multiplication

(λ.f)(x) = λ.f(x),

then F(X,F) is a vector space over F.

Definition

Given a set X, we say H forms an RKHS on X over F, provided that

(i) H is a vector subspace of F(X, F),

(ii) H is endowed with an inner product, 〈 , 〉, making it a Hilbert space,

(iii) For every y ∈ X, the linear evaluation functional Ey : H → F, defined by Ey(f) =

f(y) is bounded.

We know that every bounded linear functional on a Hilbert space can be given by the inner

product with a unique vector in it. So, if H is an RKHS on X, then we have that for

every y ∈ X, there exists a unique vector (function) ky ∈ H, such that for every f ∈ H,

Ey(f) = 〈f, ky〉 = f(y). The function ky is called the reproducing kernel for the point

y. The 2-variable function K : X× X→ F, defined by

K(x, y) = ky(x) = 〈ky, kx〉

is called the reproducing kernel for H.

The term ‘reproducing’ is used in the sense that the Hilbert space H can be recovered

from the functions ky, as their linear span is dense in H. Recall that, a subset of a Hilbert

space is said to be dense if its closure is equal to the whole space. In fact, if the orthogonal

complement of the closure of the linear span of a subset of a Hilbert space is the trivial

space, then that linear span must be dense in that Hilbert space.

Note that a function f ∈ H is orthogonal to the closed linear span of the functions

{ky, y ∈ X} if and only if 〈f, ky〉 = f(y) = 0 for all y ∈ X, which holds if and only if f = 0.

This proves that the span of ky’s is dense in H, and so the Hilbert space can be reproduced

with the help of these ky’s.

It is also interesting to note that in the case that F = R, the Hilbert space can be

complexified. Let H be an RKHS of real valued functions on the set X with reproducing

kernel K(x, y). Let W = {f1 + if2 : f1, f2 ∈ H}, which is the vector space of complex

valued functions on X. Set

〈f1 + if2, g1 + ig2〉W = 〈f1, g1〉H + 〈f2, g2〉H + i〈f2, g1〉H − i〈f1, g2〉H.

Then this defines an inner product on W, with norm ‖f1 + if2‖2w = ‖f1‖2 + ‖f2‖2. Thus,

W forms a Hilbert space. Also, as

f1(y) + if2(y) = 〈f1 + if2, ky〉 = (f1 + if2)(y),
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we have that W equipped with this inner product is an RKHS of complex-valued functions

on X, with kernel K(x, y). The space W is called the complexification of H, which still

preserves the reproducing kernel. Henceforth, we shall consider only the case of complex-

valued RKHS since every real-valued RKHS can be complexified in a way that still preserves

the reproducing kernel.

Examples

Sometimes to fix ideas it helps to look at a non-example. Suppose that we take the

continuous functions on [0, 1], C[0, 1], define the usual 2-norm on this space, i.e., ‖f‖2 =∫ 1

0
‖f‖2 dt, and complete to get the Hilbert space L2[0, 1]. Now, given any point x0 ∈ [0, 1],

one can always construct a sequence fn ∈ C[0, 1], such that limn ‖fn‖ = 0, and limn fn(x0) =

+∞, for example let gn be the piecewise linear function defined on [0,1] with support on

[x0 − 1/n2, x0 + 1/n2] and gn(x0) = n, as shown in figure below for n = 1 , 2, 3, etc, and

define fn =
√
gn for each n ∈ N. Here, we have taken x0 = 1/2. Note that ‖fn‖ = 1/n and

fn(x0) =
√
n for each n ∈ N. Thus, Ex0 is not bounded for any x0 in [0,1] and hence L2[0, 1]

Figure 1. Graph of gn for n = 1 , 2, 3

is not an RKHS on [0, 1]. Thus, reproducing kernel Hilbert spaces are quite different from

L2-spaces.

We now look at a few key examples.

The Hardy Space of the Unit Disk, H2(D). This space is defined as

H2(D) =

{
f : D→ C

∣∣ f(z) =

∞∑

n=0

anz
n, z ∈ D,

∞∑

n=0

|an|2 <∞
}
.

Endow H2(D) with the inner product

〈f, g〉 =

∞∑

n=0

anbn,

where f, g ∈ H2(D) with f(z) =
∑∞
n=0 anz

n , g(z) =
∑∞
n=0 bnz

n. Then the map L :

H2(D) → l2(Z+) defined as L(
∑∞
n=0 anz

n) = (a0, a1, . . . , an, . . .) is a linear, inner product

preserving isomorphism, Z+ = N ∪ {0}. Thus, H2(D) can be identified with l2(Z+), which
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is a Hilbert Space. Next, we see that for z ∈ D,

|Ez(f)| = |f(z)| =

∞∑

n=0

anz
n

 ≤
∞∑

n=0

|an||zn| ≤
( ∞∑

n=0

|an|2
)1/2( ∞∑

n=0

|z2n|
)1/2

= ‖f‖ 1

(1− |z|2)1/2
,

using the Cauchy-Schwartz inequality. Thus, ‖Ez‖ ≤ 1
(1−|z|2)1/2 , which shows that Ez is

bounded for all z ∈ D. This also shows that each power series defines a function on D and

the usual vector space operations are well-defined. Thus, H2(D) defines an RKHS on D.

To compute the kernel, let w ∈ D. Let f(z) =
∑∞
n=0 anz

n , g(z) =
∑∞
n=0 w

nzn

Then, 〈f, g〉 =
∑∞
n=0 anw

n = f(w). Thus g is the reproducing kernel for w and so

K(z, w) = kw(z) = g(z) =

∞∑

n=0

wnzn =
1

1− wz .

This function is called the Szego kernel on the disk.

Sobolev Spaces on [0, 1]. These are very simple examples of the types of Hilbert spaces

that arise in differential equations. Let

H =
{
f : [0, 1]→ R : f is absolutely continuous, f(0) = f(1) = 0, f ′ ∈ L2[0, 1]

}

Recall that a function f : [0, 1]→ R is absolutely continuous if and only if it is differentiable

almost everywhere, f ′ ∈ L1[0, 1] and is equal to the integral of its derivative modulo f(0),

i.e., f(x) = f(0) +
∫ x
0
f ′(t) dt. In this case, f(x) =

∫ x
0
f ′(t) dt, since f(0) = 0 [see [8, Cor.

20.18] for more details]. Clearly, H is a vector space of functions on [0,1]. Endow H with

the non-negative, sesquilinear form,

〈f, g〉 =

∫ 1

0

f ′(t)g′(t) dt.

Since f is absolutely continuous and f (0) = 0, for any 0 ≤ x ≤ 1, we have that,

f(x) =

∫ x

0

f ′(t) dt =

∫ 1

0

f ′(t)χ[0,x](x) dt.

Thus, by the Cauchy-Schwartz inequality,

|f(x)| ≤
(∫ 1

0

f ′(t)2 dt

)1/2(∫ 1

0

χ[0,x](t) dt

)1/2

= ‖f‖√x.

This last inequality shows that ‖f‖ = 0 if and only if f = 0 .Thus 〈, 〉 is an inner product

on H and that for every x ∈ [0, 1], Ex is bounded with ‖Ex‖ ≤
√
x.

All that remains to show that H is an RKHS, is to show that it is complete. If {fn}
is a Cauchy sequence in this norm, then {f ′n} is Cauchy in L2[0, 1] and hence there exists

g ∈ L2[0, 1] that this sequence converges to. By the above inequality, {fn}must be pointwise

Cauchy and hence we may define a function by setting f(x) = limn fn(x). Since,

f(x) = lim
n
fn(x) = lim

n

∫ x

0

f ′n(t) dt =

∫ x

0

g(t) dt,
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it follows that f is absolutely continuous and that f ′ = g, a.e. and hence, f ′ ∈ L2[0, 1].

Finally, f(0) = limn fn(0) = 0 = limn fn(1) = f(1), and so f ∈ H.

Thus, H is a RHKS on [0,1].

It remains to find the kernel function. To do this we first formally solve a differential

equation and then show that the function we obtain by this formal solution, belongs to H.

To find ky(t), we apply integration by parts to see that,

f(y) = 〈f, ky〉 =

∫ 1

0

f ′(t) k′y(t) dt = f(t) k′y(t)
∣∣∣
1

t=0
−
∫ 1

0

f(t) k′′y (t) dt = −
∫ 1

0

f(t) k′′y (t) dt.

If we let, δy denote the formal Dirac-delta function, then f(y) =
∫ 1

0
f(t)δy(t) dt, where

δy(t) = δ(t− y) =

{
1, if t = y

0, if t 6= y
and

∫ ∞

−∞
δ(t) = 1.

[For more details about Dirac-delta function, see [7, sec 3.4]]. Thus, we need to solve the

boundary-value problem,

−k′′y (x) = δy(x), ky(0) = 0 = ky(1).

The solution to this system of equations is called the Green’s Function for the differential

equation. Solving formally, by integrating twice and checking the boundary conditions we

find that

K(x, y) = ky(x) =

{
(1− y)x, if x ≤ y
(1− x)y, if x ≥ y.

The computations are as follows. First, notice that

∫ x

−∞
δ(t) dt = H(x) =

{
1, if x > 0

0, if x ≤ 0.

So, integrating the equation −k′′y (x) = δy(x) w.r.t. x, implies

k′y(x) =

{
A(y)− 1, if y < x

A(y), if x ≤ y,

where A(y) is an arbitrary function, which again, on integrating implies,

ky(x) =

{
(A(y)− 1)x+B1(y), if y ≤ x
A(y)x+B2(y), if x ≤ y,

where B1(y), B2(y) are arbitrary functions. As ky(0) = 0, we have B2(y) = 0. Also,

ky(y) = A(y)y +B1(y)− y = A(y)y, which implies B1(y) = y.

So,

ky(x) =

{
A(y)x+ y − x, if y ≤ x
A(y)x, if y ≥ x

As ky(1) = 0, A(y) +y−1 = 0, which implies A(y) = 1−y and we have the required kernel.
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Bergman Spaces on Complex Domains. Let G be an open and connected subset of

C. Set

B2(G) =

{
f : G→ C | f is analytic on G and

∫∫

G

|f(x+ iy)|2dxdy < +∞
}

Define a sesquilinear form on B2(G) as

〈f, g〉 =

∫∫

G

f(x+ iy)g(x+ iy) dxdy.

Then this defines an inner product on B2(G), so that it becomes an inner product space.

In fact, B2(G) forms an RKHS on G [see [1] for details]. The reproducing kernel for B2(G)

is called the Bergman kernel for G.

The result above extends to open connected subsets of Cn and to many complex man-

ifolds. Knowledge of the Bergman kernel of such such domains has many applications in

complex analysis and the study of this kernel is still an active area of research. It is remarked

that B2(C) = (0). Thus, the only analytic function defined on the whole complex plane

that is square-integrable is the 0 function. Also, for G = D, the Bergman kernel for B2(D)

is given by K(z, w) = 1
(1−zw)2 .

Moore-Aronszajn Theorem

This theorem first appeared in Aronszajn’s Theory of Reproducing Kernels, Transac-

tions of the American Mathematical Society 68(3) in 1950, [2]; although he attributed it to

E.H.Moore. The theorem gives a necessary and sufficient condition for a function K(x, y)

to be the reproducing kernel for some RKHS, thereby providing a characterization of repro-

ducing kernels. We state some preliminaries and make some of the remarks before stating

the theorem.

(i) Let A = (aij) be an n×n complex matrix. Then A is said to be positive, denoted by

A ≥ 0, if and only if for every α1, α2, . . . , αn ∈ C, we have that
∑n
i,j=1 αiαjaij ≥ 0.

(ii) If 〈 , 〉 is the usual inner product on Cn, given by

〈x, y〉 = y∗x =

n∑

i=1

xiyi

then in terms of the inner product, A ≥ 0 if and only if 〈Ax, x〉 ≥ 0 for all x ∈ Cn. It

is remarked that, A ≥ 0 if and only if A = A∗ and every eigenvalue, λ, of A, satisfies

λ ≥ 0. For this reason, some authors might prefer to call such matrices positive

semi-definite or non-negative. In the case that A = A∗ and every eigenvalue, λ, of

A, satisfies λ > 0, then we call A strictly positive, denoted by A > 0. Since A is

a matrix, we see that A > 0 is equivalent to A ≥ 0 and invertible.

(iii) Let X be a set and let K : X × X → C be a function of two variables. Then K is

called a kernel function, denoted by K ≥ 0 , if and only if for every n and every

choice of n distinct points {x1, x2, . . . , xn} in X, the matrix (K(xi, xj))n×n ≥ 0.

Please note that some authors refer to such functions as positive definite functions, while

others call them positive semi-definite functions. This terminology is not standard, but we
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have adopted it following Aronszajn’s terminology. Also, we shall see that there is a one-to-

one correspondence between kernel functions and reproducing kernels.

It is clear from the definition of the RKHS that the reproducing kernel defined is conjugate

symmetric and a kernel function, as

n∑

i,j=1

αiαjK(xi, xj) =

n∑

i,j=1

αiαj
〈
kxj , kxi

〉
=

〈
n∑

j=i

αjkxj ,

n∑

i=1

αikxi

〉
=

wwwwww

n∑

j=1

αjkxj

wwwwww

2

≥ 0

for every choice {x1, x2, . . . , xn} in X and α1, α2, . . . , αn ∈ C.

We would like to remark here that, generally for a reproducing kernel, (K(xj , xj)) > 0,

for if not, then it follows from the above equation that there must exist some non zero vector

such that ‖∑j αjkxj
‖ = 0.

Hence, for every f ∈ H we have that
∑
j αjf(xj) =

〈
f,
∑
j αjkxj

〉
= 0.

Thus, in this case there is an equation of linear dependence between the values of every

function in H at some finite set of points.

Such examples do naturally exist. Recall that in the Sobolev spaces on [0, 1], we were

interested in spaces with boundary conditions, like f(0) = f(1), in which case k1(t) = k0(t),

since f(0) = f(1) implies 〈f, k0〉 = 〈f, k1〉, which imples 〈f, k0 − k1〉 = 0. Since f 6= 0,

k0(t) = k1(t).

Alternatively, many spaces of analytic functions, such as the Hardy or Bergman spaces,

contains all polynomials. Note that there is no equation of the form
∑
j βjp(xj) = 0, that

is satisfied by all polynomials (try with 1, x, x2, . . . , xn). Consequently, the reproducing

kernels for these spaces always define matrices that are strictly positive and invertible!

Thus, for example, recalling the Szego kernel for the Hardy space, we see that for any

choice of points in the disk, the matrix,
(

1
1−λiλj

)
is invertible.

For one glimpse into how powerful the theory of RHKS can be, one can try to show this

matrix to be invertible by standard linear algebraic methods.

Moore-Aronszajn Theorem. We have seen above that the reproducing kernel of an

RKHS defines a kernel function. The Moore-Aronszajn theorem states the converse of

this result:

Let X be a set and let K : X×X→ C be a function. If K is a kernel function, then there

exists an RKHS H of functions on X such that K is the reproducing kernel of H.

The proof of this theorem involves the construction of the required RKHS, by defining

functions ky(x) = K(x, y) for each y ∈ X, and taking W to be the space of functions spanned

by these ky’s. We then complete W by taking equivalence classes of Cauchy sequences from

W , to obtain a complete Hilbert space H.

It is remarked that if Hi, i = 1, 2 are RKHS’s on X with kernels, Ki(x, y), i = 1, 2,

and if K1(x, y) = K2(x, y) for all x, y ∈ X, then H1 = H2 and ‖f‖1 = ‖f‖2 for every f .

This shows that there is a one-to-one correspondence between RKHS’s on a set and kernel

functions on that set. Thus, given a kernel function K : X × X → C, there exists a unique

RKHS H on X with reproducing kernel K.
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A Method for calculating reproducing kernels

Let H be an RKHS on X with reproducing kernel K and let {fn} ⊆ H. As

|fn(x)− f(x)| = | 〈fn − f, kx〉 | ≤ ‖fn − f‖ ‖kx‖ ,

we see that limn ‖fn − f‖ = 0, implies that f(x) = limn fn(x) for every x ∈ X.

This result although looks quite simple, but gives us another means of calculating the

kernel for an RKHS that is very useful.

Recall that for given vectors {hs : s ∈ S} in a Hilbert space H, indexed by an arbitrary

set S, we say that h =
∑
s∈S hs, provided that for every ε > 0, there exists a finite subset

F0 ⊆ S, such that for any finite set F, F0 ⊆ F ⊆ S, we have that
∥∥h−∑s∈F hs

∥∥ < ε.

Two examples of this type of convergence are given by the two Parseval Identities. When

{es : s ∈ S} is an orthonormal basis for a Hilbert space, H, then for any h ∈ H, we have

that

‖h‖2 =
∑

s∈S
|〈h, es〉|2 and h =

∑

s∈S
〈h, es〉es.

Note that these types of sums do not need S to be an ordered set to be defined. Perhaps,

the key example to keep in mind is that if we set an = (−1)n/n, n ∈ N, then the series,∑∞
n=1 an converges, but

∑
n∈N an does not converge. In fact, for complex numbers, one

can show that
∑
n∈N zn converges if and only if for every permutation π of N,

∑∞
n=1 zπ(n)

converges, which is if and only if
∑∞
n=1 |zn| converges. Thus, this convergence is equivalent

to absolute convergence in the complex case.

The following result gives us another means of calculating the kernel for an RKHS.

Theorem. Let H be an RKHS on X with reproducing kernel, K(x, y). If {es : s ∈ S} is

an orthonormal basis for H, then K(x, y) =
∑
s∈S es(y)es(x) where this series converges

pointwise.

Proof. For any y ∈ X, we have that

〈ky, es〉 = 〈es, ky〉 = es(y).

Hence, ky =
∑
s∈S es(y)es, where these sums converge in the norm on H. But since they

converge in the norm, they converge at every point. Hence

K(x, y) = ky(x) =
∑

s∈S
es(y)es(x). �

For a quick example of this theorem, note that in the Hardy space, the functions en(z) =

zn, n ∈ Z+ form an orthonormal basis and hence, the reproducing kernel for the Hardy

space is given by
∑

n∈Z+

en(z)en(w) =

∞∑

n=0

(zw)n = 1/(1− zw).

Returning to our earlier example of Sobolev space on [0, 1],

H =
{
f : [0, 1]→ R : f is absolutely continuous, f(0) = f(1) = 0, f ′ ∈ L2[0, 1]

}
,
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it can be checked that for n 6= 0, the functions en(t) = (e2πint − 1)/2πn belongs to H and

are orthonormal.

If f ∈ H and 0 = 〈f, en〉 = i
∫ 1

0
f ′(t)e2πint dt, for all n ∈ N, then since the function,

{e2πint}n 6=0 together with the constants span L2[0, 1], we see that f ′(t) is constant and

hence that f(t) is a first degree polynomial. But the boundary conditions, f(0) = f(1) = 0,

imply that this polynomial is 0.

Hence, we have shown that these functions are an orthonormal basis for H. Applying the

above theorem and our earlier calculation of the reproducing kernel, we have that,

Re


∑

n 6=0

(e2πinx − 1)(e−2πiny − 1)

4π2n2


 =

∑

n 6=0

cos 2πn(x− y)− cos 2πnx− cos 2πny + 1

4π2n2

=

{
(1− y)x if x ≤ y
(1− x)y if x ≥ y

The real part is considered because we know that the kernel function is real valued.

Applications

RKHS’s are a very useful and powerful tool of functional analysis with application in

many diverse paradigms. RKHS’s arise in a number of areas, including approximation

theory, statistics, machine learning theory, group representation theory, theory of one or

several complex variables, study of invariant Riemannian metrics, interpolation problems,

band-limited signal models/information control, multivariate statistics, fractal interpolation,

boundary value problems, harmonic analysis, quantum mechanics(bound state problems),

functional data analysis among others. They have been studied and used in the works of

many mathematicians, such as A.N.Kolmogorov, E.Parzen, E.Hille, etc. We give one such

application to illustrate the scope and importance of this field of analysis.

Band-limited Signal Models. In communication and information theory, band-limited

signal models are used for analysis and representations. These models are used as they

represent fairly well the signals encountered in practice. Basic properties of the abstract

RKHS have been applied to study band-limited signals. In fact, the classes of finite energy

Fourier-, Bessel-, Sine- and Cosine- transformed band-limited signals are specific realizations

of RKHS.

In a given class of signals, there are certain properties of the signal that can be attained

from extremal problems. If the given class of signals forms an RKHS, then the reproduc-

ing kernel plays a very important part in such problems. This in turn allows sampling

expansions, along with specific truncation bound errors.

Now suppose K is the reproducing kernel of an RKHS H. Consider a simple problem:

Suppose t0 is a fixed point in the set T of the abstract RKHS H. What signal f ∈ H, with

specific value f(t0) = M , where M is a real constant, has minimum energy ‖f‖2 ? On the

other hand, what signal with energy ‖f‖2 ≤ E has a maximum value for f(t0) ?

It has been shown that the required signal for the first problem is given by

f(t) = M K(t,t0)
K(t0,t0)

,
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with minimum energy ‖f‖2 = M2, in the subspace generated by the constraint g(t0) = M .

The solution to the second problem is given by the signal

f(t) = ±E1/2 K(t,t0)
K(t0,t0)

.

We now extend the problem for n specified sampling instants, f(ti) = Mi, i = 1, 2, . . . , n,

and consider the same problem of finding a signal f ∈ H satisfying the above condition,

with minimum energy. The solution to this slightly extended problem is given as a unique

signal that interpolates over a finite number of points, and approximates any other specified

signal with minimum energy. The solution is based on the Gram- Schmidt orthogonaliza-

tion process used in interpolation theory, and the required signal is also generated by the

reproducing kernel. This RKHS approach simplifies the solutions and offers a unified point

of view. The interested readers are referred to [3] for more details.
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ALAN TURING’S REACTION-DIFFUSION SYSTEMS:

UNDERSTANDING PATTERN FORMATION IN ANIMALS

IPSA BAJAJ, APURVA AGARWAL AND SRISHTI BANSAL

Abstract. This paper describes a model that provides a comprehensive explanation of

Alan Turings reaction-diffusion systems. The reaction-diffusion model is widely studied

in the field of mathematical biology and provides a basis for understanding pattern gen-

eration in several animals during their developmental stages. Further, we shall illustrate

a method for reproducing numerical calculations with Microsoft Excel and discuss some

examples of the patterns generated by the model.

Background - How it all began?

Haven’t we often wondered how the cheetah got its spots or the zebra its

stripes?

This very question was first addressed by the great mathematician Alan Turing in 1952

in his theoretical work “The Chemical Basis of Morphogenesis.” It was observed that

a small ball of cells (embryo), completely uniform (or homogeneous), during the early stages,

gave rise to the dramatic patterns of a zebra, leopard, giraffe or butterfly.

Turing’s Hypothesis

• Turings model hypothesized the existence of two molecules in the embryonic tissue-

activator and inhibitor, collectively termed as morphogens.

• The “Inhibitor” is responsible for suppressing the production of both morphogens

while, the “Activator” promotes their production.

• If the morphogens interact with each other in a specific manner, a periodic pattern

is formed from a homogeneous initial distribution of activator and inhibitor.

Modeling Equations

Initial Conditions:

• For simplicity, let us consider a one-dimensional rod-like embryonic tissue.

• Define horizontal length as 1 and vertical length as dy(<< 1).

• Cells inside this tissue produce two molecules - activator and inhibitor, and these

control the production (or degradation) of both molecules and diffuse to neighbour-

ing cells.

33
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Discretization:

• Divide this rod-like structure into small pieces having horizontal length dx(<< 1)

and let the distribution of morphogens in these small pieces be homogeneous.

• Two factors affect the concentration of morphogens in these small pieces:

1) Interaction of activator and inhibitor within each element.

2) Transfer of activator and inhibitor between element and two nearest neighbors.

• Consider updating the system in discrete time steps dt. So, at time step m (m is a

positive integer), a time of m ∗ dt has actually passed.

• Define concentration of activator molecule in the nth tissue element at time m ∗ dt
as p(n,m) and concentration of inhibitor as q(n,m).

Reaction Term:

• Let rate of change of concentration of activator and inhibitor be f(p, q) and g(p, q),

respectively.

• Then p (activator) and q (inhibitor) are called the ‘reaction terms’.

• For simplicity we shall allow negative values of p and q and set their initial values

to 0.

Diffusion Term:

• Consider the interaction between a tissue element and its two nearest neighbouring

tissue elements during the time interval (m ∗ dt, (m+ 1) ∗ dt).
• Let concentration of activator in the nth tissue element be p(n,m) ; then concen-

tration of activator in the tissue element to the right will be p(n+ 1,m).

• The amount of activator transferred from element n to n+ 1 that is proportional to

the concentration gradient (p(n+ 1,m) − p(n,m))/dx and transverse length of the

element dy in time dt, is given as:

dp ∗
(p(n+ 1,m) − p(n,m))

dx
∗ dy ∗ dt (1)

where dp represents the diffusion coefficient of the activator.

Then, the concentration change induced by this transfer is given as:

dp ∗
(p(n+ 1,m) − p(n,m))

dx2
∗ dt (2)

Similarly, the concentration change induced by the transfer of activator from the

left neighbouring element is:

dp ∗
(p(n− 1,m) − p(n,m))

dx2
∗ dt (3)

Taken together, the change of activator concentration in element n between time

m ∗ dt and (m+ 1) ∗ dt is:

dp ∗
(p(n+ 1,m) + p(n− 1,m) − 2 ∗ p(n,m))

dx2
∗ dt (4)
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Similarly, the concentration change of inhibitor is:

dq ∗
(q(n+ 1,m) + q(n− 1,m) − 2 ∗ q(n,m))

dx2
∗ dt (5)

in which dq is the diffusion coefficient of the inhibitor.

Governing Equations: Taking both reaction and diffusion into consideration, the con-

centrations of activator and inhibitor at time (m+ 1) ∗ dt are:

p(n,m+ 1) = p(n,m) +

(
f (p(n,m), q(n,m)) + dp

p(n+ 1,m) + p(n− 1,m) − 2 ∗ p(n,m)

dx2

)
dt

q(n,m+ 1) = q(n,m) +

(
g (p(n,m), q(n,m)) + dq

q(n+ 1,m) + q(n− 1,m) − 2 ∗ q(n,m)

dx2

)
dt

(6)

Boundary Conditions: In the left-most and right-most tissue we define special conditions.

If the total number of tissue elements is Ntotal, then p(1,m) and p(Ntotal,m) have only one

neighbour and cannot be treated as above; that is, Equations 6 only hold for integer n with

n greater than 1 and less than Ntotal.

Periodic boundary condition: We define the values of p(1,m) and p(Ntotal,m) to be

equal for all m, so that the left-most tissue and right-most tissue are connected.

Zero-flux boundary condition: We assume that the boundary is impermeable. In this

case, we have:

p(1,m+ 1) = p(1,m) +

(
f (p(1,m), q(1,m)) + dp

p(2,m) − p(1,m)

dx2

)
dt (7)

p(Ntotal,m+1) = p(1,m)+

(
f (p(Ntotal,m), q(Ntotal,m)) + dp

p(Ntotal − 1,m) − p(Ntotal,m)

dx2

)
dt

(8)

Fixed boundary condition: In this case, we have to set p(1,m) and p(Ntotal,m) to

specific values for all time. Hence:

p(1,m+ 1) = α; p(Ntotal,m+ 1) = β, (9)

where α and β are fixed (non-negative) numbers.

Transformation to continuous equation:

• Obtain the corresponding continuous differential equations by making dt and dx

infinitely small.

• Define the concentration of activator and inhibitor as u(x, t) and v(x, t).

• Then, the above discrete governing equations become:

u(x, t+ dt) − u(x, t)

dt
= f(u(x, t), v(x, t)) + dp

u(x+dx,t)−u(x,t)
dx − u(x,t)−u(x−dx,t)

dx

dx
(10)
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v(x, t+ dt) − v(x, t)

dt
= g(u(x, t), v(x, t)) + dq

v(x+dx,t)−v(x,t)
dx − v(x,t)−v(x−dx,t)

dx

dx
(11)

• If dt and dx tend to zero, then we have:

∂u(x, t)/∂t = f(u(x, t), v(x, t)) + dp∂
2u(x, t)/∂x2

∂v(x, t)/∂t = g(u(x, t), v(x, t)) + dq∂
2v(x, t)/∂x2

(12)

Numerical calculation of the reaction-diffusion system: For instance, consider the

following reaction-diffusion system:

∂u/∂t = 0.6u− v − u3 + 0.0002(∂2u/∂x2)

∂v/∂t = 1.5u− 2v + 0.01(∂2v/∂x2)
(13)

with domain size [0, 1] and zero-flux boundary conditions.

Numerical calculation in Microsoft Excel:

• Use the system in Equations 13 with domain size 1 and take dx = 0.05 and dt = 0.1.

• So, we have 20 pieces of tissue (1/0.05 = 20) that contain both activator and in-

hibitor.

• In an Excel spreadsheet, let each column represent the concentration of activator or

inhibitor in a specific tissue piece. This is expressed as a 20× 2 matrix of numbers.

• Input the governing equations (Equation 6) to obtain concentration of activator (p)

and inhibitor (q) at a certain tissue piece after time dt has passed.

• By repeating this 100 to 200 times, we observe that the concentrations gradually

form a periodic structure as shown in Figure 1.

Figure 1. Numerical calculation results of the reaction-diffusion system

(Equations 13) by Excel



ALAN TURING’S REACTION-DIFFUSION SYSTEMS 37

Figure 2. Time-course. Thick line-distribution of activator; Thin line-

distribution of inhibitor.

Properties of Turing reaction–diffusion systems

Relationship between domain size and number of structures: If the domain size is

changed, the number of structures changes, but the size of each structure remains the same,

as can be seen in Figure 3.

Figure 3. Each structure stays the same size, but number of structures

increases when domain size is changed from 0.5 to 2.0.

Changing initial conditions: If the initial condition is not homogeneous, pattern forma-

tion can occur sequentially. However, the final periodic structure is more or less the same

as shown in Figure 4.

Figure 4. Initial value of p at the left-most point is increased.
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REVEALING THE PATTERN - A COMPREHENSIVE CONCLUSION

• The Activator and Inhibitor are not color pigments themselves, just the morphogens

that interact to create an underlying pattern.

• If the Activator also promotes the generation of a pigment in the skin of the animal

then this pattern can be made visible.

• Skin cells could produce yellow pigment unless they detect high levels of Activator

instructing them to produce black. This would yield a visible pattern similar to

that of a ‘CHEETAH’.

• The size of the spots depends on threshold values as a certain concentration of

Activator is required to turn ‘ON’ the pigment. If threshold is high, then tiny spots

are seen, but if the threshold is lowered,then the spots are larger. Such a mechanism

may explain the difference in markings between two subspecies of ‘GIRAFFE’: the

Rothschild’s giraffe and the reticulated giraffe, the first of which has smaller, more

widely-spaced spots than the other as shown in Figure 5a & 5b.

• Saturation can also be an important factor. If the concentration of Activator can

reach a maximum value (i.e., it is produced as fast as it breaks down or diffuses

away) then the spots may join up into stripes. This is believed to be what happens

in the ‘ZEBRA’.

(a) A low threshold for

turning pigment ON

(b) A high threshold for

turning pigment ON

Figure 5
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Extension of Course Contents

A great deal of learning happens beyond the formal coursework. This section hence, aims

to provide a creative, fertile setting for productive research that goes beyond the confines of

classroom, and precincts of syllabi. It strengthens and expands the existing knowledge and

adds interests to the course and provides an experience of transformative learning.
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A MATHEMATICA ENABLED EXPLORATION OF GIBBS

PHENOMENON

JONAKI B GHOSH

Abstract. Fourier series can be used to model various types of problems in physics,

engineering and biology. They arise in many practical applications such as modelling

air flow in the lungs, electric sources that generate wave forms that are periodic and

frequency analysis of signals. In contrast to Taylor series which can be used only to ap-

proximate functions that have many derivatives, Fourier series can be used to represent

functions that are continuous as well as discontinuous. The partial sums of the series,

approximates the function at each point and this approximation improves as the number

of terms are increased. However, if the function to be approximated is discontinuous,

the graph of the Fourier series partial sums exhibits oscillations whose value overshoots

the value of the function. These oscillations do not disappear even as the terms are

increased. This phenomenon is referred to as Gibbs phenomenon (Libii, 2005). Thus

the approximation of functions by Fourier series, near the points of discontinuity, are

inaccurate and this limits the use of Fourier Series in some cases. The topic of Fourier

series is an integral part of mathematics courses at most undergraduate programmes in

Engineering and Science. A computer algebra system like Mathematica, Maple or Mat-

lab would enable students to visualize Fouries series of different functions and perform

computations quite easily. This article presents an exploration of Gibbs phenomenon

using Mathematica.

Study of the Basics of Fourier Analysis

The following are some preliminary results related to Fourier Series.

Result 1. Any function g(t) defined and continuous on the interval (0, π) can be written

as

g(t) = b1 sin t+ b2 sin 2t+ b3 sin 3t+ . . .+ bn sinnt+ . . . . (1)

This is referred to as the Fourier sine series.

Result 2. The coefficients bn in (1) are given by bn = 2
π

∫ π
0
g(t) sinnt dt.

This is as follows. If we multiply both sides of (1) by sinnt and integrate from 0 to π we

obtain
∫ π

0

g(t) sinnt dt =

∫ π

0

b1 sin t sinnt dt+

∫ π

0

b2 sin 2t sinnt dt+ . . .+

∫ π

0

bn sin2 nt dt+ . . . .

Using the results
∫ π

0

sinmt sinnt dt = 0, m 6= ±n and

∫ π

0

sin2 nt dt =
π

2
,
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all the integrals vanish except the one with coefficient bn. Thus
∫ π

0

g(t) sinnt dt = bn

∫ π

0

sin2 nt dt =
π

2
bn,

or bn =
2

π

∫ π

0

g(t) sinnt dt. (2)

Result 3. If a periodic function f(t) with period 2π is integrable on [−π, π] then the Fourier

series associated with the function f(t) can be written as,

f(t) = a0 +

∞∑

n=1

an cosnt+

∞∑

n=1

bn sinnt, (3)

where the Fourier coefficients a0, an, bn are given by

a0 =
1

2π

∫ π

−π
f(t) dt, an =

1

π

∫ π

−π
f(t) cosnt dt, bn =

1

π

∫ π

−π
f(t) sinnt dt (4)

for n = 1, 2, 3, . . ..

If f(t) is piecewise continuous in [−π, π] and has a left and right hand derivative at

each point in that interval, then the corresponding Fourier series (3) with coefficients (4) is

convergent. Its sum is f(t), except, at a point x0, at which f(t) is discontinuous. Thus if

the Fourier series corresponding to a function f(t) converges with the sum f(t), then the

series will be called the Fourier series of f(t).

Evaluating the Fourier Series of Some Elementary Functions.

The Fourier Series associated with some elementary functions such as g(t) = 1, t and t2

in the interval (0, π) may be evaluated as follows:

For g(t) = 1, where 0 < t < π, (2) gives

bn =
2

π

∫ π

0

g(t) sinnt dt =
2

π

∫ π

0

sinnt dt = − 2

nπ
[cosnπ − cos 0] =

2

nπ
[1− cosnπ] .

Since cosnπ = 1 when n is even and −1 when n is odd,

bn =

{
4
nπ if n is odd,

0 if n is even.

Substituting these in g(t) =
∑∞
n=1 bn sinnt = b1 sin t+ b2 sin 2t+ b3 sin 3t+ . . ., we get

1 =
4

π

[
sin t+

sin 3t

3
+

sin 5t

5
+

sin 7t

7
+ . . .

]
=

4

π

∞∑

n=0

sin(2n+ 1)t

2n+ 1
.

As an extension of this let us consider the square wave function which is defined as

g(t) =

{
−1 when −π < t < 0,

1 when 0 < t < π,
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and which is periodic with period 2π. Using (3) we can obtain its Fourier series. Using (4)

it can be easily seen that a0 and an are equal to 0. Computing bn we get,

bn =
2

nπ
(1− cosnπ), which gives bn =

{
4
nπ if n is odd,

0 if n is even.

In a similar manner, for g(t) = t (0 < t < π), (2) gives

bn =

{
2
n if n is odd,

− 2
n if n is even,

and the Fourier Series for g(t) = t for 0 < t < π is obtained as

t = 2

[
sin t− sin 2t

2
+

sin 3t

3
− sin 4t

4
+ . . .

]
= 2

∞∑

n=1

(−1)n+1 sinnt

n
.

The Fourier series for g(t) = t2 for 0 < t < π may be respectively obtained as

t2 =
π2

3
− 4

[
cos t− cos 2t

4
+

cos 3t

9
− cos 4t

16
+ . . .

]
=
π2

3
− 4

∞∑

n=1

(−1)n+1 cosnt

n2
.

The reader is urged to do these computations on their own.

Plotting the Partial Sums of Fourier Series

In order to visualize how the Fourier series actually approximates a function, say f(t) = 1,

we use a Mathematica code to plot the partial sums of the series.

fourierseries1[k ]:=

(4/Pi)*Sum[(Sin[(2n+1)t])/(2n+1), { n, 0, k } ];

Plot[{ 1, fourierseries1[10] }, { t, 0, Pi},
PlotRange− >{{ 0, Pi}, {.75, 1.25}}]

In line 2 of the above code the Sum command has been used to define the Fourier Se-

ries where k denotes the number of terms of the series. In lines 3 and 4 the Plot command

is used to plot k terms of the series (here k = 10). Figure 1 shows the plot of the first 10

terms of the series.

Figure 1. Plot of the Fourier series partial sum of f(t) = 1 for 10 terms.
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The above code may be modified slightly by varying ‘k’ which represents the number of

terms of the Fourier Series Partial Sum (FSPS). In the following code k is varied from 1 to

100 in steps of 10. Here the Plot command has been enclosed in the Table command in

line 3 so that the output generates the plots of the partial sums as k varies from 1 to 100 in

steps of 10. Also PlotStyle with Thickness and RGBColor options display the actual

function f(t) = 1 in red and the Fourier series plot in blue. Figure 2 illustrates how the

FSPS plot ‘oscillates’ around the actual function f(t) = 1.

fourierseries1[k ]:=

(4/Pi)*Sum[(Sin[(2n+1)t])/(2n+1), { n, 0, k } ];

Table[Plot[{ 1, fourierseries1[k] }, { t, 0, Pi},
PlotRange− >{{ 0,Pi}, {.75, 1.25}}],
PlotStyle− >{{ Thickness[0.009],

RGBColor[1,0,0] }, RGBColor[0,0,1]}],{k,1,100,10}]

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 2. Plots of the FSPS of f(t) = 1 for 1, 11, 21, 31, 41, 51, 71 and

91 terms.

Graphical Analysis of the Fourier series Partial Sums

The FSPS plots show that the function f(t) = 1 can be approximated by the terms of its

Fourier series for t lying in the interval (0, π). The larger the number of terms, the better
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is the approximation. The plots of the first 1, 11, 21, 31, 41, 51, 71 and 91 terms between 0

and π shown in figure 2 (a) to (h) reveal that the approximation gets better as the number

of terms are increased.

It is easy to observe that the Fourier series plots give a good approximation of the function

within the interval (0, π) but tend to oscillate towards the end points of the interval creating

peaks which overshoot the function value. These oscillations persist and seem to approach

the end points as the terms are increased. This is known as GibbsPhenomenon.

Let us look at the square wave function which is periodic with period 2π and exhibits

jump discontinuity at x = −π, x = 0 and x = π. The above Mathematica code may be used

to obtain the FSPS plots for this function by changing the interval from (0, π) to (−2π, 2π).

In figure 3 these plots have been generated for 1, 5, 10 and 50 terms respectively in the

interval (−2π, 2π).

(a) (b)

(c) (d)

FIGURE 3. Plots of the FSPS of the square wave function for 1, 5, 10 and

50 terms.

We observe from the plots that peaks appear closer to the discontinuities followed by

rapid oscillations. In fact as the number of terms of the partial sums are increased, these

peaks get closer to the discontinuities but they do not disappear and the oscillations get

smaller and more rapid.

Similarly the Mathematica code may be appropriately modified to obtain the plots for

the FSPS of f(t) = t for t in the interval (0, π). Figure 4 shows that as the number of terms

increase, the plot of the FSPS comes closer to the graph of the actual function.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4. Plots of the FSPS of f(t) = t for 1, 11, 21, 41, 71 and 91 terms.

The following Mathematica code may be used to plot the FSPS of f(t) = 1, closer to the

endpoint 0 (Figure 5). The Table command (last line of the code) can be used to generate

a table of values to measure the height of the highest peak, that is, the peak closest to the

discontinuity.

fourierseries1[k ]:=

(4/Pi)*Sum[(Sin[(2n+1)t])/(2n+1), { n, 0, k } ];

plota[Plot[{ 1, fourierseries1[10] }, { t, 0, Pi},
PlotRange− >{{ 0,1}, {.75, 1.25},
PlotStyle− >{{ Thickness[0.009],
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RGBColor[1,0,0]}, RGBColor[0,0,1]}]
Table[{t, N[ fourierseries1[10]]},{t,0.1,0.2,0.001}]

(a) (b)

(c) (d)

FIGURE 5. Plots of the FSPS of f(t) = 1 for 11, 21, 51 and 91 terms closer

to the endpoint t = 0 of the interval (0, π).

The Fourier Series partial sum values of the highest peaks of the function f(t) = 1 are

summarized in the following table.

Table 1: Calculations of the FSPS for f(t)=1.

k (no of terms in Fourier Series) FSPS value of highest peak Value of t at which the

highest peak is attained

10 1.1796 0.144

20 1.1791 0.075

30 1.1790 0.051

50 1.1789 0.031

100 1.1781 0.016
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The output of the program as tabulated in Table 1 helps us to conclude that the over-

shoots approach the y − axis as number of terms is increased but the value of the highest

overshoot remains constant at 1.179. The successive peaks get smaller. A similar analysis

can be done for the other functions as well.

Conclusion

This article presents a way of visualizing and exploring Fourier Series and Gibbs phe-

nomenon using Mathematica. This can form an interesting lab activity as students can

evaluate the Fourier series of different functions, plot their partial sums within an inter-

val and also calculate the value of the overshoots. In this manner they can observe how

Gibbs phenomenon occurs for different functions.
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MARKOV CHAINS – THE KEY TO STOCK MARKET

AKANKSHA MITTAL AND EKTA SHARMA

Abstract. The aim of this research is to analyze the stock price movements of the

shares of a company (in this case Reliance Industries Ltd.) and create a model using

Markov Chains theory. The model has been created using past share prices of RIL and

has been used to comment on their long and short term behavior. The results have then

been verified using actual short term data.

Introduction

Before introducing Markov Chains, it is essential to define a Stochastic Process that is,

a process in which the elements of a set are each classified as being in one of the several

fixed states that can switch over time. Markov Chain is a special kind of Stochastic Process

where the outcome of an experiment depends only on the outcome of a previous experiment.

In other words, the next state of the system depends only on the current state and not on

the previous states. Markov Chains have the property that probabilities involving how the

process evolve in the future depend only on the present state of the process, and so are

independent of events in the past.

Example 1. To explain the above process with a simple example, we consider the population

of a country in the year 2010. Based on the assumption that the population of the country

in the given year remains constant and that there is a continual movement of the people

between the city and the suburbs, we obtain the following matrix:

Each entry of this matrix is non - negative and the sum of the entries in each column is 1.

Such a matrix is called a transition matrix or a stochastic matrix. For an arbitrary

n× n transition matrix M the rows and the columns correspond to n states and the entry

Mij represents the probability of moving from state j to state i in one stage. So in this

example the two states are living in the city and living in the suburbs.
49
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Each entry of this matrix A tells us the probability of a person moving from his current state

to another state in the next year. For example, the entry A11 tells us that the probability

of a person, currently living in the city, continues to live in the city is 0.90 while the entry

A21 tells that there is 0.1 probability for a person, currently living in the city, to move to the

suburbs in the next year. Likewise other entries hold their respective meaning. Hence this

transition matrix A gives us the probability of a person moving from one state to another in

one year.

Suppose 70% of the current population lives in the city while 30% lives in the suburbs.

Expressing this initial distribution as a column vector, we get the initial probability vector

P given by

Now if we wish to determine the proportion of the current population that will reside in the

city and the suburbs respectively in the next year, we simply multiply this initial probability

vector P with the transition matrix A, to obtain the vector AP which gives the respective

distribution i.e.,

This means that 63.6% of the current population will live in the city in the next year whereas

36.4% of the current population will be in the suburbs.

With sufficient knowledge in hand, we proceed onto the model that we have created to predict

the future movement of the stock prices of Reliance Industries Limited, and comment on

their profitability by analyzing their long term behavior.

METHODOLGY

The daily closing values of share prices of Reliance Industries Ltd. for the months of

December 2012 and January 2013 were collected from Reuters. This data was interpreted

to obtain the Transition Matrix T .
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In the above matrix, the columns and rows signify the movement of current days share

prices as compared to the previous days share prices. The entry T11 gives the probability

that the current days price of the stock which was lower than the price of the previous day

will decrease on the next day. The process used to calculate the probabilities can be better

understood with the help of the following hypothetical example:

Suppose the following table gives the closing share prices of Reliance Industries Ltd. for a

week:

Days Prices

Monday 6

Tuesday 5

Wednesday 4

Thursday 3

Friday 5

To calculate the Total Outcomes for the first column, we need those current prices which

are less than the previous days prices that is 5 (Tuesday), 4 (Wednesday) and 3 (Thursday).

Hence, Total Outcomes = 3

Now, to calculate the Favorable Outcomes out of the Total Outcomes, that is those closing

prices which are less than the current closing prices, which in turn were less than the previous

days closing prices. In this case, the Favorable Cases are (6 → 5 → 4) and (5 → 4 → 3).

Here, (4 → 3 → 5) is not a Favorable Case as 5 which is the next days closing price is

greater than 3 which is the current days closing value.

Hence, No. of Favorable Cases = 2

Therefore, the hypothetical probability in T11 must be = Favorable Outcomes/ Total Out-

comes = 2/3

Predicting the Long Term Behavior of the Stock Prices: The following theorems

were used as the basis for the formation of the transition matrix T and analyzing its long

term behavior.

Theorem 1. If A is an n×n matrix satisfying the following:

(i) Every eigen value λ of A satisfies either λ = 1 or |λ| <1

(ii) A is diagonalizable.

Then lim
n→∞

An exists.

Theorem 2. Every Transition matrix has 1 as an eigen value.
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Theorem 3. If A is a regular transition matrix, then as n approaches infinity,

An → S

where S is the matrix of the form [v, v, ..., v] with v being a constant vector.

The eigen values of the transition matrix T was calculated to be 1 and 0.1087 . Com-

puting the eigen vectors corresponding to each eigen value, we obtain an invertible matrix

Q given by:

Q =

[
1 1

1.278 −1

]

The columns of Q are the eigen vectors of T such that T = QDQ−1 where D is a diagonal

matrix given by:

D =

[
1 0

0 0.1087

]

Hence T is diagonalizable.

Therefore Theorem 1 guarantees the existence of the limit of our transition matrix T . So

lim
n→∞

Tn = lim
n→∞

(QDQ−1)n = lim
n→∞

QDnQ−1 =

The columns of the matrix S are same and so the model goes well in accordance with

Theorem 3.

Observation: In the limit matrix S, the probability of the current closing price being

greater than or equal to the previous days closing price is more as compared to the proba-

bility of the current closing price being less than the previous days closing price.

Inference: In the long run, the probability of the closing prices of the stocks of Reliance

Industries Ltd. to move up as compared to their previous days value is more. This clearly

implies that the stocks of Reliance Industries Ltd. are profitable in the long run and hence

validating the general perception of the stocks of RIL.
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Predicting the Stock Price Movement in the next month (February): To predict

the share price movement in the next month that is February 2013, we need an Initial

Vector, as obtained in the Example 1. The Initial Vector obtained was as follows:

The Initial Vector V was obtained from the Closing values of the stock price for the

month of January. For the column vector V , the first row figure that is 0.41 indicates the

probability that the stock prices of January decreased over their previous days value. And

the second row indicates that the Closing Price of the Current day was greater than or equal

to the closing price of the previous day.

As in Example1, we multiply the Transition Matrix T with the Initial Vector V to obtain

TV :

Observation: The first row of TV gives the probability that the stock price will decrease

in February and the second row gives the probability that the stock prices will increase in

the month of February, the latter being more than the former.

Inference: Since the probability in the latter case is more, this model predicts that the

stock prices of Reliance Industries Ltd. will generally increase in the month of February.

Validation: The closing stock prices of Reliance Industries Ltd. were obtained from Feb-

ruary 1, 2013 to February 14, 2013. The probability of the current days closing prices being

less than or greater than equal to the previous days prices was calculated. The following

column vector was obtained:

Comparing the corresponding rows of the above vector with the vector TV ,
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it is seen that the predictions of the model are in sync with the actual price movements.

Both the vectors indicate a general increase in the stock prices of Reliance Industries Ltd.

This validates the predictions of our model.

References

[1] Friedberg, Insel, Spence, Linear Algebra.

[2] S.Vasanthi, M.V.Subha, An Empirical Study on Stock Index Trend Prediction using Markov Chain

Analysis.

[3] Suchi Mitra, Predicting Stock Prices.

[4] Kevin J. Doubleday and Julius N.Esunge, Application of Markov Chains to Stock Trends.

[5] http://aix1.uottawa.ca/ jkhoury/markov.htm

[6] http://in.reuters.com/finance/stocks/overview?symbol=RELI.BO$exchange=INB

Akanksha Mittal,B.Sc.(H) MATHEMATICS, 3rd Year, LADY SHRI RAM COLLEGE FOR WOMEN

E-mail address: akanksha.mittal1392@yahoo.com

Ekta Sharma, B.Sc.(H) MATHEMATICS, 3rd Year, LADY SHRI RAM COLLEGE FOR WOMEN

E-mail address: ekta.sharma2891@gmail.com



Interdisciplinary Aspects of Mathematics

Mathematics is just not a classroom discipline but a tool for organizing and understand-

ing various concepts and applications. This section covers topics that delve into other

disciplines, integrating the mode of thinking and knowledge of the respective discipline with

Mathematics. The section hence highlights the cosmic scope of Mathematics, leveraging its

amalgamation with other disciplines.
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PROCUREMENT- DISTRIBUTION COORDINATION IN TWO STAGE

SUPPLY CHAIN FOR MULTI PRODUCT

JYOTI DARBARI AND KIRAN GARG

Abstract. A supply chain is a global network of organizations that cooperate to improve

the flows of material and information between suppliers and customers at the lowest cost

and the highest speed. The focus of our current study is to formulate an optimization

problem to specifically determine the optimal order quantities in a two stage supply chain

along with the objective of minimizing the total cost that includes cost of purchasing,

holding and transportation for the distributors and cost of holding and transportation

for the retailers. We develop an integrated inventory-transportation two stage supply

chain model incorporating the discounted policies on ordered goods and transportation

network. The formulated model explains the flow of ordered quantity from single source

to multiple distributors and from each distributor to its group of retailers.

Introduction

This paper deals with a two stage supply chain model that consists of a single supplier,

multiple distribution centers, and multiple retailers where each distribution center supplies

products to a group of retailers in each period. The distribution centers replenish their in-

ventory from the supplier, and the retailers replenish inventory from the distribution centers

in which group they belong. Further, we assume the supply chain is vertically integrated.

At first stage, coordination is implemented between supplier and distribution centers in

which the distributor avails all unit discount on purchased quantity as well as various freight

policies on transportation. At second stage quantity ordered by the retailer is transported

by the distributor in a single trip, by selecting the type of vehicle for a particular retailer on

the basis of requirement of the retailer. The objective is to minimize the total cost of the two

stage supply chain for a finite planning horizon taking into account the inventory holding

costs and the transportation costs for entire chain. Mathematical models are formulated

to determine optimal order quantities for an integrated inventory-transportation problem.

The mode of transporting the goods from supplier to distributors takes place through two

categories: truck load (TL) and less than truck load (LTL) transportation. In TL trans-

portation, there is a fixed cost per load up to a given capacity. In LTL transportation,

we assume a constant cost per unit. In the second stage of transportation, the goods are

transported in a single trip by choosing a vehicle on the basis of the demand of the retailer

and the capacity of the vehicle.

57
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Sets

We will use the following Sets in our model:

• Product set with cardinality P and indexed by i.

• Period set with cardinality T and indexed by t.

• Item discount break point set with cardinality L and indexed by small l.

• Distributors set with cardinality M and indexed by m.

• Retailers set with cardinality J and indexed by j.

• Jm ⊆ J set of retailers associated with mth distributor.

• Vehicle set with cardinality F and indexed by f.

Decision variables

Ximt : Amount of item i ordered by mth distributor in period t.

Rilmt : If the ordered quantity falls in lth price break then the variable takes value 1 other-

wise zero,

Rilmt =

{
1, if Ximt falls in lth pricebreak

0, if otherwise

IDimt : Inventory level at the end of period t of product i for mth distributor.

INim : Inventory level at the beginning of planning horizon for product i for mth distrib-

utor.

IRijt : Inventory level at the end of period t of product i for jth retailer.

INRij : Inventory level at the beginning of planning horizon for product i for jth retailer.
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δmt : Total items ordered (transported in weights) in period t by mth distributor.

αmt : Total number of truck loads in period t to mth distributor.

γmt : Amount in excess of truckload capacity (in weights) loads in period t to mth dis-

tributor.

pjt : Total items ordered (transported in weights) in period t to jth retailer.

capf : capacity(in weight) of the f th truck (cap0 = 0).

umt =

{
1, if considering TL & LTL both policies,

0, if considering only TL policy.

Zjft =

{
1, capf−1 < pjt ≤ capf ,
0 otherwise.

Parameters

C : Total cost.

IDimt : Demand for item i in period t at mth distributor.

him : Inventory holding cost per unit of item i of mth distributor.

Dijt : Demand for item i in period t at jth retailer.

CRijt : Consumption of item i in period t at jth retailer.

qij : Inventory holding cost per unit of item i of jth retailer.

wi : Per unit weight of item i.

φi : Unit purchase cost for ith item.

βmt : Fixed freight cost for each truck load in period to mth distributor.

df : Slab for discounts (price breaks).

ω : weight transported in each full truck (in kgs).

s : cost/kg of shipping in LTL policy.

ailt : Limit beyond which a price break becomes valid in period t for item i for lth price

break.

dilt : It reflects the fraction of regular price that the distributor pays for ordered items.

capf : capacity of the f th truck (in weights).

cf : Cost of transporting per ton of weight through f th truck.

Objective Function

The objective function (minimization) is given by:∑
m

∑
t[
∑P

i=1{himIDimt+
∑L

l=1RilmtdiltφiXimt}+(sγmt+αmtβmt)umt+(αmt+1)βmt(1−
umt)] +

∑
j

∑
f

∑
t cfpjtZjft +

∑
t

∑
j

∑
i qitIRijt.
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Constraints

Following are the constraints :

The inventory level of mth distributor at the end of period 1:

IDim1 = INim +Ximl −
Jm∑

j=1

Dij1 ∀i = 1, . . . , P, m = 1, . . . ,M (1)

The inventory level of the mth distributor at the end of period t :

IDimt = IDimt−1 +Ximt −
Jm∑

j=1

Dijt ∀i,m, t = 2, . . . , T (2)

Since there are no shortgaes, therefore,

T∑

t=1

IDimt +

T∑

t=1

Ximt ≥
Jm∑

j=1

T∑

t=1

Dijt ∀i = 1, . . . , P, m = 1, . . . ,M (3)

The inventory level of the jth retailer at the end of period 1:

IRij1 = INRij +Dij1 − CRij1 ∀i = 1, . . . , P, j = 1, . . . , J (4)

The inventory level of the jth retailer at the end of period t:

IRijt = IRijt−1 +Dijt − CRijt ∀i = 1, ..P, j = 1, . . . , J, t = 2, . . . , T (5)

Since there are no shortages, therefore,

T∑

t=1

IRijt +

T∑

t=1

Dijt ≥
T∑

t=1

CRijt ∀i = 1, . . . , P, j = 1, . . . , J (6)

The above equations are balancing equations.

The mth distributor will order minimum quantity to get discount i.e.

Ximt ≥
L∑

l=1

ailtRilmt ∀i = 1, . . . , P, m = 1, . . . ,M, t = 1, . . . , T (7)

In any period, exactly one level will be activated, therefore

L∑

l=1

Rilmt = 1 ∀i = 1, . . . , P, m = 1, . . . ,M, t = 1, . . . , T (8)

Transported quantity to the mth distributor according to item weight is:

δmt =

P∑

i=1

[wiXimt

L∑

l=1

Rilmt] ∀m = 1, . . . ,M, t = 1, . . . , T (9)

The minimum weighted transported quantity to the mth distributor is equal to:

δmt ≤ (ymt + αmtω)umt + (αmt + 1)ω(1− umt) ∀m = 1, . . . ,M, t = 1, . . . , T (10)

truckload Overhead units from capacity in weights are:

δmt = (ymt + αmtω) ∀m = 1, . . . ,M, t = 1, . . . , T (11)
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Only one vehicle will be chosen as per the requirement of the jth retailer in period t

pjt ≥
F∑

f=1

cf−1Zjft ∀j = 1, . . . , J, t = 1, . . . , T (12)

∑

f

Zjft = 1 ∀j = 1, . . . , J, t = 1, . . . , T (13)

Transported quantity to the jth retailer in period t according to item weight is:

pjt =

P∑

i=1

[wiDijt

∑

f

Zjft] ∀j = 1, . . . , J, t = 1, . . . , T (14)

Ximt, IDimt, IRijt, Dijt, δmt, αmt, γmt, pjt ≥ 0;

Rilmt, umt, Zift ∈ {0, 1},i = 1, . . . , P, j = 1, . . . , J, k = 1, . . . ,K,

t = 1, . . . , T, l = 1, . . . , L, m = 1, . . . ,M

Price breaks are defined as:

df =

{
dilt, ailt ≤ Xit ≤ ail+1t

diLt, Xit ≥ aiLt

i = 1, . . . , P ; t = 1, . . . , T ; l = 1, . . . , L;

Lower limit of first price break in the models is zero and after the upper limit of first break

buyer will get discount.

Case Study

One of the reputed company which supplies LED televisions has three distribution centers

in three different cities each distribution center has two retailers each in its city. Supplies are

transported to each distribution center and each center supplies to only its group of retailers

once in the beginning of January, May and September. Same Transporter offers services

to each of these distribution centers and retailers. He offers various discounts depending

upon the mode of transport chosen. At first stage, TL/LTL mode for distribution and at

second stage requirement based vehicle is used. Supplier also offers some quantity discounts

on bulk purchase to the distributors Goal of the company is to minimize the total cost of

the entire supply chain which includes Inventory holding cost and transportation cost of the

distributors and retailers.. The relevant data is provided as under (Table 1− 8):

Table 1: Consumption of three styles of LEDs in three periods at the retail stores (CRijt)
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1 2 3

J1 250 300 350

J2 250 300 350

J3 250 300 350

J4 250 300 350

J5 250 300 350

J6 250 300 350

Table 2: Inventory carrying cost per item(in Rs) incurred by six retailers for three items

(him)

The initial inventory in hand for all retailers would be zero for all items

IRNij = 0 for i = 1, 2, 3 and j = 1, 2, 3, 4, 5, 6

Wt.(Kg.) 1 2 3

7 9 11

Table 3: The weight(in kg.) of each item (wi)

RS 1 2 3

25000 30000 38000

Table 4: Purchase Cost for all types of LEDs (φi)

1 2 3

M1 200 270 350

M2 200 270 350

M3 200 270 350

Table 5: Inventory carrying cost per item(in Rs) incurred by three distributors for three

items (him)

Table 6: Figures given by Supplier (Cost to bear)

Weight each truck carries is (ω) 500 kg. Cost of each unit of shower by LTL mode is (s) Rs

25. Cost of truckload (in Rs) for the two distributors for the three periods is (βmt):
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M1 M2 M3

J 2500 2600 1500

My 2700 2500 1700

S 2950 1650 1900

Table 7: Figures given by Transporter for distributor

There are 4 types of vehicles F1, F2, F3, F4

Cost/Kg. capacity F1 F2 F3 F4

30 25 22 17

100 150 175 200

Table 8 : Figures given by Transporter for Retailer

Solution

The above formulated optimization problem is programmed in Lingo 11.0 software. The

required data is fed in the program to generate the solution. We have considered 3 periods

and 3 products and obtained the solution given below. The Minimum cost incurred by the

Company for the entire supply chain is: Rs 4, 22, 77380

The Ordered Quantity by the retailers(Dijt) of given products in the respective periods

are

The Ordered Quantity by the distributors(Ximt) of given products in the respective

periods are
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Conclusion

In this paper we have investigated the two stage supply chain optimization model that

minimizes purchasing, holding and transportation cost. Using the formulated model, the

optimal ordered quantity, holding inventory and weighted transported quantity are deter-

mined for both stages. Hence we can conclude from our present research that integration of

various functions of different entities is possible, in order to minimize the aggregate cost of

purchasing and transportation activities.
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A PEEK INTO THE LIFE OF A STATISTICIAN

DOOTIKA VATS

Abstract. This paper aims at introducing to the reader basic statistical analysis done

by most applied statisticians. The paper introduces simple linear regression with the

help of an example. The objective is to build a linear model between two variables and

test the significance of the model.

Introduction

Statistics is generally understood to be a branch of mathematics concerned with collecting

and interpreting data. This however, is largely untrue. Statistics, by itself should not

be understood as a branch of mathematics. Mathematics is definitive, and in most cases

deterministic. A problem in mathematics has one correct answer. In statistical analysis,

there is no correct answer. This is what makes statistics the most flexible and sought after

tool in understanding the workings of the world.

This is not to say that mathematics renders itself useless in the field of statistics. Indeed,

understanding most topics in statistics requires a sound knowledge of mathematics, which

is why most statisticians have an undergraduate degree in mathematics. Today, we live in

a world where everything turns into data at the end of the day, and there are not enough

qualified statisticians to make sense of the data. In 2009, an article in the New York Times

[1] elaborated very articulately, on why being a statistician is one of the most sought after

professions.

One of the most important aspect of statistics is to find out if certain things are related to

each other. For example, the fact that smoking causes lung cancer was proved largely due to

statistical analysis. Similarly, we might want to analyze if a certain variable, Y (response)

depends on a set of variables X1, X2, . . . , Xp (predictors). And if there is such a dependence,

then we want to find the f such that Y = f(X1, X2, . . . , Xp). This function f is found by

using Regression.

This paper focuses on Simple Linear Regression, i.e., when we have only one predictor, X,

and f is a linear function, giving the relation, Y = β0 + β1X. The concept of simple linear

regression will be explained step by step with the help of an example dataset.

65
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Dataset

A dataset is a collection of data, usually presented in tabular form, where each column

represents a variable of interest. In simple linear regression, there are only two columns,

one for the response variable, Y and one for the predictor variable, X. This paper uses the

example of one of the most basic and famous datasets.

Karl Pearson organized the collection of data of over 1100 families in England in the period

1893 - 1898. This particular data set gives the heights in inches of mothers and their

daughters. All daughters are at least age 18, and all mothers are younger than 65. The

objective is to find out whether there is a relation between the height of mothers and their

daughters.

Notice how the background of the dataset is as important as the numbers in the dataset.

For example, it is important to know that the daughters are atleast age 18, so we can assume

that they have attained their full height.

Now, the original dataset has 1100 observations, but for the purpose of this paper, I have

chosen a random subset of 200 observations from the dataset. This is just to ensure that the

graphs produced are not messy. The numbers in the dataset are given in the table below.

Of course, looking at the numbers does not really help us, specially when we have 200 such

pairs. This is where graphical tools prove to be much more useful.

X Y

Mother’s Height Daughter’s Height

63.5 66.0

63.5 63.2

62.7 63.0

...
...

Each of the rows above, corresponds to a datapoint, which is to say that each point can be

written as (xi, yi), and this would correspond to a point on a graph of Y vs X. When all the

datapoints are plotted together, we get something called a scatterplot. This is essentially

the first tool in understanding whether there is any relation between X and Y .

From the scatterplot above, we notice that as mother’s height increases, we see some increase

in the daughter’s height. Note that this is not individually true, but the trend indicates

that it is generally true.

As mentioned earlier, the objective is to find a linear relationship between X and Y .
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Model

If there is a linear relationship between X and Y , all points (xi, yi) should lie on a common

line. We also know that they do not exactly lie on a common line and there is some

deviation(as demonstrated in the scatterplot above). This is represented by the model

below

yi = β0 + β1xi + εi,

where β0 is the y-intercept, β1 is the slope of the line, and εi is known as the error. When

we write this model, we make the following very important assumptions:

• A linear model is appropriate.

• All the observations, y1, . . . , yn are independent of each other. In this dataset, we

assumed that none of the daughters are related.

• The errors εi ∼ N(0, σ2). This means that the errors follow a normal distribution[3]

with mean 0 and variance σ2.

• All observations have a constant variance (σ2, as opposed to σ2
i ).

Whenever a model is fit to the dataset, it is the duty of the statistician to ensure that the

model assumptions stated above hold true.

One important point to note in the model, is that the unknown quantities are β0 and β1,

and the points (xi, yi) are all known, since the line is fit only after we have the data. Thus,

the term “linear” refers to the equation being linear in the βs, and not in the xs. If instead,

we had the equation

yi = β0 + β1x
2
i + εi,
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this would still be a linear regression model.

The next step is to try and estimate β0 and β1 from the data. Notice how we use the word

“estimate”, because every time the experiment is done, we get a different dataset, and every

dataset gives a new “estimate” of these two parameters. These estimates are denoted by β̂0
and β̂1, and are calculated by using a method known as Ordinary Least Squares (OLS).

OLS - Ordinary Least Squares. Clearly, we can not fit a line by joining all the points.

This is where mathematics, gives way to statistics. We fit a line to the data, in such a way

that the overall deviation of the datapoints from the line is minimized. This is done by a

method known as Ordinary Least Squares, or OLS.

Notice that in the model, the error εi is nothing but the deviation of each point from the

line. Now let us assume that we have already fit the line, and have found β̂0, β̂1 and for

each xi we have a ŷi. Thus each (xi, ŷi) lies on the line:

ŷi = β̂0 + β̂1xi.

The estimated errors are known as residuals = yi − ŷi, giving :

ε̂i = yi − (β̂0 + β̂1xi).

The OLS method estimates β̂0 and β̂1 are obtained by minimizing the sum of the squared

residuals over all observations, i.e.,

(β̂0, β̂1) = min
(β0,β1)

n∑

i=1

(yi − (β0 + β1xi))
2.

This turns out to be an exercise in basic calculus, the proof for which can be found in most

statistics books [2]. The OLS estimates we get are:

β̂1 =

n∑

i=1

(yi − ȳ)(xi − x̄)

n∑

i=1

(xi − x̄)2
, β̂0 = ȳ − β̂1x̄,

where ȳ and x̄ are the means of yis and xis. β̂0 and β̂1 represent the actual y-intercept and

slope of the line.

In our dataset, we get β̂0 = 25.05 and β̂1 = 0.58 giving the equation

Daughterheight = 25.05 + 0.58MotherHeight.

Interpretation:

β̂0 = 25.05 implies that when the mother’s height is 0 inches, the daughters height on

average is 25.05 inches. This of course does not make sense, and that is alright. In most

cases β0 need not be interpreted. We are more interested in β1. β̂1 = 0.58 implies that



A PEEK INTO THE LIFE OF A STATISTICIAN 69

with one inch increase (decrease) in the mother’s height, we expect the daughters height

to increase(decrease) by 0.58 inches. This is what gives us the relation between mother’s

height and daughter’s height. We need to analyze this more carefully.

Significance. The most important aspect of simple linear regression is to make sense of

the β̂1. Since β̂1 is the slope of the line, a value of 0 would mean a horizontal line. If the

line was horizontal, it would imply that there is no relationship between X and Y . Thus,

our objective is to always check whether β̂1 = 0 or not.

The data that we collect is known as a sample and is a representation of the whole popula-

tion. Clearly, it is impossible for us to collect the heights of mothers and their daughters all

over the world. So we collect heights from a sample that represents the population. Every

time, we collect data from a sample, we will get different estimates of β0 and β1.

Remember how in our dataset we had chosen 200 observations at random from 1100 obser-

vations so that the scatterplot was not messy. If we take different sets of 200 observations

again, we will get different estimates of β1.

No. β̂1

1 0.61

2 0.59

3 0.51

4 0.54

Notice, from the table that the β̂1 values are close to 0.58, but not exactly 0.58. Thus, for

each sample we get different estimates. And so we need to check if for our sample, the value

of β̂1 is different enough from 0 for us to be confident that it is in fact, not 0.
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This is done by using a method known as Hypothesis Testing. A step by step explanation

on this can be found in the references [2], [3]. I present briefly, how we decide whether β̂1 is

different enough from 0.

We first construct a Null Hypothesis, H0, and an Alternate Hypothesis, Ha. H0 is

assumed to be true, and from the data, we want to gather enough evidence to reject the H0

and accept Ha.

H0 : β1 = 0

Ha : β1 6= 0

This structure makes sense, because we want to be sure that there is in fact a relationship

between X and Y , and for that to be true, we want the data to give us enough evidence to

reject the null hypothesis.

Next, we calculate something called the Test Statistic, t which in this case is

t =
β̂1

se(β̂1)
where se(β̂1) =

√√√√√√
σ̂2

n∑

i=1

(xi − x̄)2
.

This t follows a t-distribution with n− 2 degrees of freedom [3]. Intuitively, this t scales β̂1
down by its standard deviation, and gives us an idea on whether the β̂1 is different from 0.

If |t| > 1.96 (approx) this means, that we can reject the null hypothesis, H0, and we say

the the variable X is significant. That is to say, that we are confident that X and Y are

related, and β1 is in fact different from 0.

In our dataset, β̂1 = 0.58, se(β̂1) = 0.069 and t = 7.79. Since |t| = 7.79 > 1.96, we can

reject H0, and claim that there is a significant relationship between mother’s height and

daughter’s height.

Additional Comments

We have, at this point succeeded in analyzing the dataset. We have found the relationship

between X and Y , and shown that this relationship is significant. This is what most

statisticians have to do when they are given a dataset. However there are some roadblocks,

and most datasets are trickier than this one. Following are some other important aspects

of statistical analysis:

• Once the model has been fit, it is important to check the assumptions. In a lot

of cases, the constant variance assumption is not valid, in which case we need to

transform our data [2].

• In a lot of cases, a linear relationship is not adequate. Higher order regression

models should then be tried [2].



A PEEK INTO THE LIFE OF A STATISTICIAN 71

• We generally have more than one predictor variable, X1, X2, . . . , Xp. In that case,

we fit the linear regression model

yi = β0 + β1x1i + . . . xpi + εi.

In our dataset for example, we could also introduce father’s height, weight of the

daughter, and time of menarche as potential predictor variables. However, in that

case, we move from 2 dimensions to p+ 1 dimensions. The regression model is then

built by using matrices [2].

• Sometimes, the data does not come from a Normal distribution, in which case we

fit Generalized Linear Regression Models [4].

Another important aspect of statistical analysis is computer programming. Since most

datasets are large, and computations are complicated, it is impractical to do regression on

paper. Statistical programming languages make life a million times easier and also provide

us with some excellent graphical tools. R and SAS are the two most famous languages

used. SAS is used mostly in industry settings and biostatistics work. R is used extensively

in academic settings. I used R to do the analysis in this paper.

Conclusion

Statistical analysis at its core is about quantifying uncertainty. It is about making inferences

from raw data, figuring out trends and concluding with confidence that the results obtained

are not coincidental.

In the end, the model obtained would probably not be the exact model. For example, if

we were able to get data on all mothers and daughters in the world, then β1 might be

very different from 0.58. But, the idea is to get as much information as possible from the

model. There is one statement most statisticians live by, “All models are wrong, but some

are useful.”
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PEAK LOAD MANAGEMENT

UMANG AGGARWAL, PRACHI SINGHAL AND RUCHI ARORA

Abstract. If you ask anyone living in Delhi what they dislike about the Metro, the

chances are they will respond with “They’re too crowded.” As it happens, this problem

has been studied using mathematical modeling techniques. This article looks at the

above mentioned problem, a topic known as “Peak Load Management.” The problem

of predicting train loads (though not always reducing crowding!) has been successfully

tackled by mathematicians working as consultants within the rail industry. This paper

will give a feel for the techniques and approaches used by such consultants, which is

highly representative of the way mathematics is used in real life.

Formal Definition Of Crowd

To start thinking about this problem, we will first need a clear definition, something

better than “They’re too crowded!” The metro has an average daily ridership of 1.8 million

commuters. Each train can carry up to 600 passengers (4 coaches), with 50 seated and

around 100 people standing passengers per coach. No wonder we complain of overcrowding.

Getting to the first definition should be simple: “At certain times of the day, trains become

very crowded, due to people wanting to travel to and from work.” The diagram below

shows how demand for a commuter train service typically varies during the day. Peak Load

Management is about trying to cope with this changing demand, without trains becoming

too overcrowded.

Figure 1

73
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But first we need to understand exactly what the consultant is required to do about it!

Here is a more thorough definition of the problem:

• Trains are crowded at peak times. This causes dissatisfaction amongst passengers,

and may lead to fewer people using the trains.

• It is difficult to know if the right amount of rolling stock is currently being used for

each route. Lengths of trains, frequency and stopping patterns can all be altered.

• It is even more difficult to know how people will behave when changes are made

to the rolling stock. For example, is it better to introduce more frequent, smaller

trains, or to make current trains longer?

• If more rolling stock is to be used, then a firm prediction must be made of how much

is needed. Having too much wastes money, having too little drives customers away.

How Mathematics Can Help

A generic outline of how the mathematical model is built up to understand this problem,

covering both the basic principles and some special cases from recent projects. There are

three basic stages to tackle the problem. These are:

(1) Understanding the choices customers are making at present;

(2) Building models which can help understand future choices;

(3) Using the model to produce results meaningful to the client.

Understanding Current Choices: If we think simply about the choices passengers must

make, then it is clear that each customer wishes to get from a point A to a point B.

Customers want to do this in the shortest amount of time possible, and to arrive at the time

that suits them. They may also have some preferences about the type of train they travel

on; for example, regular travellers may prefer to avoid certain very crowded trains.

Since the ideal journey would be one that took no time at all, and every other journey of

course falls short of this ideal, we can think of the problem as a minimisation problem. Each

customer tries to minimise some combination of the inevitable real-world inconveniences of

travel. We’ll call this combination the attractiveness of a train to a customer who can choose

between a number of different trains,

AC,T = tC,T

where, AC,T is the attractiveness of a train T to a costomer C and tC,T , is the journey time

on train T of the journey customer C wishes to make. This first attempt is very crude, but

we can improve it by also taking into account the difference between the time the customer

wanted to arrive at, and the actual arrival time of the train:

AC,T = tC,T −N(aT − dC),

where aT is the actual arrival time of the metro, dC is the time the passenger would have

liked to arrive at, and N is a number telling us how much better or worse it is to be an

extra minute early or late, compared with an extra minute spent traveling.
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Figure 2

The final factor we will take into account is the crowding on the train. We modify the

equation further, to get:

AC,T = [tC,T −N(aT − dC)] × f(lT /cT ),

where lT is the trainload, cT is the number of seats on the train, and f is a factor describing

the importance of crowding.

As we can see, higher the attractiveness lower would be the preference for that particular

train.

When this equation is used to describe the attractiveness of trains, the result looks something

like the diagram above. Because of its appearance, this is called a “rooftop chart.”

For a customer with a given arrival time, the attractiveness of a train is equal to the travel

time, plus an allowance for the difference from their preferred arrival time. Using the graph,

this means finding the train with the smallest attractiveness value at the customer’s preferred

arrival time. (Remember, as journey time increases, so does attractiveness. This means the

trains become more “attractive” to customers as our attractiveness measure decreases.) For

someone wanting to arrive at 12:15, Train 1 and Train 2 are equally attractive. Any earlier,

and Train 1 becomes more attractive, any later and Train 2 wins.

Studying Data On Customer Behaviour: What we have described above is model-building

largely by common sense and conjecture. The real effort goes into testing these hypotheses

and calculating the true values of parameters such as N . We will not describe this process

in detail, but here is an overview of how it works:

• Actual data on numbers of people travelling are collected. Cases where just one

factor has changed in isolation are found (say, one train arrives 10 minutes later

than previously, all the others stay the same).

• The numbers choosing that train before and after the change are analyzed to find a

value for the factor N .

Whole papers could be written on the approaches used to find different factors,
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either in isolation or experimentation. The techniques might involve interviewing

customers to assess their stated preferences for different options (for example, a fast,

infrequent service, versus a slow frequent service), or analyzing very large amounts

of historic data to assess whether the effects are truly linear (as assumed here) or

whether more complex equations should be used.

Building a Model: Once equations have been arrived at to explain customer choices, we

are ready to build a model. This will allow us to think about what might happen to customer

behavior, and hence train loadings, if:

• Demand increases (or decreases!);

• The timetable changes (more trains, faster trains);

• The number of seats available changes (longer trains).

We’ll look in detail at a simple case where there are only six trains, and only one origin

and destination point say Rajiv Chowk. Obviously, in reality the situation would be much

more complex, with trains calling at many points along the route. However, this simple

example illustrates the general procedure.

The Demand Profile: First of all we need is to quantify, when people want to travel. We do

this by splitting the time we want to study into time bands. In this case we are looking at

a morning peak period, and the time is split into ten minute bands, as shown in the table

below: We should ideally include the capacity of the trains and look at crowding, but for

simplicity we’ll leave that out for now.

Choosing The Best Train: Now, we simply apply the equation to see which train is most

attractive in each time band. The table below shows the attractiveness values for each train

and departure time, using a value of 0.5 for N . Remember that lower the attractiveness

value, more attractive is the train.

Allocating Demand to trains: Since this is a simple model we’ll assume that everyone boards

the best train (in real models we assume some people board the second and third best trains,

which does in fact happen in reality. This is sometimes referred to as a “fuzzy logic” ap-

proach). This gives the following train loads:

Train Number Train1 Train2 Train3 Train4 Train5 Train 6

Train Load 551 559 807 499 487 397

This is the model in a nutshell. Now we can change the number of trains, the train times,

the demand level or the demand profile and instantly see the effect.

Producing meaningful results for clients: Having the model isn’t everything. We must

understand the results it gives well enough to advise clients. Like, for example, if a client

(DMRC here) was specifically interested in the number of passengers who would be stand-

ing on trains when a new change was introduced. When considering numbers standing,
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Figure 3

we found that statistical analysis of the model results was required to provide meaningful

figures. To see why, consider the predictions of numbers standing produced in our example

above:

Train number Train 1 Train 2 Train 3 Train 4 Train 5 Train 6

Capacity 250 200 300 200 200 250

Standing 301 359 507 299 287 147

So the model predicts a total of 1900 people standing.

Conclusion

The model used by us to predict the number of people traveling in a particular train or

number of people standing in a train given a time frame is not a totally precise method to

calculate the same. We are talking about people, their precise behavior is hard to predict.

However, this model can help us predict how they “may” behave but we can never be

certain. Also, all of the trains will have some people standing on certain days. This model

has initially assumed that everyday is same and the actual number of people standing on

any given day is same as average number of people standing on all days. As we have seen,

random fluctuations in passenger numbers mean that this won’t be so. A more accurate

method for our calculation would be by considering the normal distribution, representing

the average number of people standing on a given day and integrating the area above our

acceptance region (capacity of train) to get a more accurate estimate. Over here, rather
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than striving to understand everything about a subject we seek to know just enough to

produce a solution which is good enough to bring about the changes required in the existing

system.
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