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Preface

The revival of Terminus a quo into Éclat has been a memorable experience.
Éclat, with its roots in french, means brilliance. The journey from the
origin of Terminus a quo to the brilliance of Éclat is the journey we wish to
undertake. In our attempt to present diverse concepts, we have divided the
journal into four sections - History of Mathematics, Rigour in Mathematics,
Extension of Course Contents and Interdisciplinary Aspects of Mathematics.
The work contained here is not original but consists of the review articles
contributed by both faculty and students.

This journal aims at providing a platform for students who wish to publish
their ideas and also other concepts they might have come across. Our
entire department has been instrumental in the publishing of this journal. Its
compilation has evolved after continuous research and discussion. Both the
faculty and the students have been equally enthusiastic about this project
and hope such participation continues.

We hope that this journal would become a regular annual feature of the
department and would encourage students to hone their skills in doing
individual research and in writing academic papers. It is an opportunity to
go beyond the prescribed limits of the text and to expand our knowledge of
the subject.

Dootika Vats
Ilika Mohan
Rangoli Jain
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History of Mathematics

The history behind various mathematical concepts and great mathemati-
cians is intriguing. Knowing the history can lead to better development of
concepts and enables us to understand the motivation behind ideas. Also, it
shows us what inspired eminent mathematicians and highlights the problems
they came across during their research.
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Abelia - The Story Behind a Great Mathematician

Abstract

This paper is a summary of the life and works of the great 19th century
mathematician Neil Henrik Abel(1802-1829). It is an attempt to elucidate
the major incidents of his life, his significant achievements and also the
legacy that he has left behind him.

INTRODUCTION

Neil Henrik Abel

Neil Henrik Abel was a noted Norwegian mathematician who has
significantly contributed to the field of mathematics. His works are being
studied currently by millions of aspiring mathematicians throughout the
world.

CHILDHOOD

Abel was born in Nedstrand,Norway(near Finny) on 5th August, 1802, to
Sren George Abel and Anne Marie Simonsen. Abel’s father had a degree
in theology and philosophy and his grandfather was an active protestant
minister at Gjerstad near Risr. After the latter’s death, Abel’s father was
appointed minister at Gjerstad. It was here that Abel grew up, together with
his elder brother, three younger brothers and a sister.

EDUCATION

At the age of 13, Abel entered the Cathedral School of Christiania (today’s
Oslo). At the time when Abel joined the school it was in a bad state. This
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is because most of the good teachers had left the school in 1813 to join the
newly established University of Christiania. The environment of the school
failed to inspire Abel and he was nothing but an ordinary student with some
talent for mathematics and physics.

Cathedral School In Cristiana

The school’s mathematics teacher, Hans Peter Bader, had a reputation
for conducting his classes in the old-fashioned way of copying from the
blackboard. In 1817, he made the fatal mistake of beating a pupil to death.
In protest against this horrendous act his students refused to attend any
more of his classes until he was fired. The headmaster had to hastily find
replacement and this event marked the entry of Bernt Michael Holmboe.

Holmboe was inspired by new pedagogical ideas. It was not long before he
discovered young Abel’s exceptional abilities and even gave Abel private
tutoring and guided him .He even funded Abel’s school education after his
father’s untimely death when his family was struck by poverty.

Bernt Michael Holmboe

A small pension from the state allowed Abel to enter Christiania University
in 1821. In 1823 Abel had a chance to travel to Copenhagen to visit the
mathematicians there, primarily Ferdinand Degen, who was regarded as
the leading mathematician in the Nordic countries. In Copenhagen, Abel
worked a little on Fermat’s Great Theorem and elliptic functions. At a
ball, Abel met the nineteen-year-old Christine Kemp, and was engaged to her.
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Christine Kemp

FAMOUS WORKS

During his short life, Abel devoted himself to several topics characteristic of
the study of mathematics of his time. He chose subjects in pure mathematics
rather than in mathematical physics. He worked on the following:
• solution of algebraic equations by radicals
• new transcendental functions, in particular elliptic integrals, elliptic

functions, abelian integrals
• functional equations
• integral transforms
• theory of infinite series
• Proof of binomial theorem stated by Newton and Euler

Quintic Equation

We know that a fifth-degree equation (quintic equation) is of the form:

ax5 + bx4 + cx3 + dx2 + ex+ f = 0

Though algebraic solutions for quadratic, cubic and quartic equations existed
but no solutions for the quintic equation had been discovered so far. Abel
eventually proved that an algebraic solution to the quintic equation was
impossible. His work on quintic equations was his greatest work. Also, the
adjective ”abelian”, used so frequently in mathematical writing has been
derived from his name.

In Berlin Abel met a mathematically inclined engineer, August Leopold
Crelle (1780-1855), who helped him publish his mathematical journal that
could compete with the well-established journals in France. By the beginning
of 1826, the first issue of Crelle’s Journal was published. Largely thanks to
Abel’s works, Crelle’s Journal quickly became famous as one of Europe’s
leading journals (the journal is still published today, and continues to have
good international repute).
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MEMORABILIA

Neil Henrik Abel contracted tuberculosis while working in Paris. He died at
the age of 27 on 6th April, 1829 in Froland, Norway. After his death, Abel
became a national hero in Norway. His birth centenary (1902) was widely
celebrated and a number of memorials were erected-the most important
among them was the monument by Vigeland which stands in the ’Abel
Garden’, the park of the Royal Palace. Few mathematicians have graced their
country’s stamps, banknotes and coins as often as Neil Henrik Abel.

ABEL PRIZE

The prize was first proposed to be part of the 1902 celebration of the 100th
anniversary of Abel’s birth however the dissolution of the Union between
Sweden and Norway in 1905 ended the first attempt to create the Abel Prize.
In 2001, renewed interest in the prize resulted in the formation of a working
group that developed a proposal to create this award. The first prize was
awarded in 2003. The prize comes with a monetary award which, in 2009,
was $9,29,000!

Abel Prize

S.R Shrinivasa Vardhan, an Indian working in the U.S. won the Abel Prize
in 2007 for his exemplary work in probability theory and in particular for
creating a unified theory of large deviation.

References

[1] John Stillwell, Mathematics and its History, 2nd Edition, pages 224-228
[2] Carl B. Boyer, A History of Mathematics, 2nd Edition, pages 583-588
[3] Jan Gullberg, From the Birth of Numbers, 1st Edition, pages 300-301

Aparna Krishnamurthy
Nikita Chaudhary
III year
Presented in Anupama Dua Paper Presentation
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Geometry in Ancient Times

Abstract

The ancient civilizations of the Greeks, Egyptians and others were well
aware of some well known mathematical results and used basic geometry
concepts in order to measure great distances and construct monuments of
massive sizes. This paper attempts to show just how well aware ancient
civilizations were, even though unable to supply mathematical proofs.

The word geometry can be broken into two Greek words - ’geo’ meaning
earth and ’metry’ meaning measurement. This makes geometry the science of
systems involving measurement. The Greeks were obsessed with measuring
distances. One such Greek was Plato (428 - 348 BC), who laid great
emphasis on geometry, especially via observation. He justified his finding
that the area of a square built on the diagonal of another was twice as big,
simply by geometrical construction as shown below.

The Greeks were also aware that the Earth was not flat, and believed it
to be roughly spherical. Eratosthenes, the polymath librarian of Alexandria,
therefore sought to measure the circumference of the earth, in about 230 BC.

Eratosthenes assumed that the earth was perfectly spherical and that rays
from the sun reaching the earth simultaneously were parallel. He felt these
assumptions would not affect the answer greatly. The Nile ran from Syene
to Alexandria. As Eratosthenes knew that the Nile ran roughly South-North,
he thought of the part of the Nile flowing between the two towns as a part
of a great circle - the circumference of the earth. The arc distance between
Alexandria and Syene was known, around 5000 stadia. Now consider the
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angle θ subtended by this arc at the centre of the earth. Then AS : C = θ
: 360, where C denotes the circumference of the earth. In order to find C,
Eratosthenes had to find the angle θ. He knew that Syene had a very deep
well whose water was touched by sunlight only at noon on the longest day
of the year, so that at that point the sun would be directly over Syene. He
realized that the angle θ subtended at the centre of the earth by the arc AS
would be the same as the angle of the sun’s inclination to the vertical in
Alexandria when it was directly over Syene. So at noon one midsummer day
he measured the sun’s inclination to the vertical in Alexandria, and found it
to be 7.2 degrees. Then by the above equation, he calculated C = (360/7.2)
x 50 stadia = 50 x 5000 stadia = 250,000 stadia, or 46,250 km, which is
just 6% off the actual circumference of 40,075 km.

The Egyptians also used geometrical concepts in building the great pyramids,
in the period 2600 BC. They knew how to measure area and planned the base
area of the pyramids accordingly. They knew that a triangle with sides 3, 4,
and 5 units yielded a right angle (Pythagoras Theorem), and used this to set
the right angle corners of the pyramids. They used the same process to make
the corners of the limestone blocks perfect right angles. They knew that water
found its own level and used this to level the site where the pyramid would
be built. A network of channels was dug across the site and filled with water.
The level of water in the channels was marked and the water drained out.
The channels were then cut to the line and filled with rubble to level them
out.

The Egyptians also used the concept of parallel lines to check if the limestone
blocks cut were flat. They used wooden rods joined by strips of twine for this
purpose. On the building site, blocks were also placed on wooden rockers so
that they could move forward easily on the sand, minimizing friction.

They used the properties of the inclined plane in order to raise the blocks to
great heights. Ramps were built which were raised along with the pyramid,
layer by layer. As the ramp became higher, it became narrower. The Egyptians
were also aware of the number π, and used it in calculations for construction.

Geometry was also studied in ancient India. Indians employed planning prin-
ciples and proportions that rooted buildings to the cosmos and the movement
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of the heavenly bodies. Everything that we know about ancient Indian Vedic
mathematics is contained in the Sulbasutras, which are appendices to the
Vedas, giving very specific rules for construction of fire altars, as unique
altar shapes were associated with unique gods and purposes, like a rhombus
for destroying enemies, etc. These also contain instructions for construction of
basic geometrical shapes like rectangle, rhombus, etc and also included some
complex constructions like transforming a square into a rectangle, an isosceles
trapezium, an isosceles triangle. The most interesting problem recorded was
that of ’circling a square’ and ’squaring a circle’. In reality, it is impossible
to exactly circle a square. i.e., construct a circle whose area is exactly the
same as that of a given square, as this requires the construction of

√
π. But

ancient India found an approximate solution to this problem, recorded by
Apastamba (600 BC) in the Sulbasutras. The procedure for the circling a
square is recorded as ”If it is desired to transform the square into a circle, a
cord of length half the diagonal of the square is stretched from the centre to
the east (a part lying outside the region of the square), with one-third of the
part lying outside added to the remainder of the half-diagonal, and then the
required circle is drawn.” The statement for squaring the circle is given as
”Divide the diameter into fifteen parts and reduce it by two of them, which
gives the approximate side of the required square.” These give the value as
3.088 and 3.004 respectively.

In ancient Peru, the Incas constructed their walls with massive blocks,
fitted together in precise mortar less joints. The stone blocks used were
rarely square or even of uniform size. Yet each stone was fitted perfectly
against the adjacent stone. Projections and indentations at the base were
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used for this purpose, as well as subtle chipping techniques. They were very
particular about the angle at which the stones were chipped, in order to
obtain a perfect fit. They used a medium sized hammer at an angle of 15-20
degrees from the vertical to chip off tiny flakes. The smallest hammer was
used to chip the margins of each edge at an outward angle.

In medieval sieges, attackers used long range artillery in order to weaken the
castle walls. Many of these were invented by the Greeks. The trebuchet and
mangonel were used to hurl projectiles. They were constructed with longer
and shorter arm lengths respectively in order to achieve a desired range for
the projectile. The ram was a suspended tree trunk with an iron head, which
was swung to and fro to hammer holes into castle walls and gates. Similar
to this was the bore, a large metal spike. The Greeks, who invented it, knew
that the impact would be greater that the tip of the metal spike.

In Babylonian Thales’s mathematical knowledge was very advanced. He
used geometry to solve problems such as calculating the height of pyramids
and the distance of ships from the shore. The Babylonian’s also used a
sexagesimal number system to record and predict the positions of the Sun,
Moon and planets.

We thus see that the ancient world was anything but ignorant of geometry.
They inculcated it in almost everything they did. Geometry is indispensable
to the understanding of structural concepts and calculations. It was also
employed as visual ordering element - a means to achieve harmony.

References

[1] Reader’s Digest,How is it done?, 1990, pages 319, 328, 338, 352, 367
[2] Marshall Clagett,Ancient Egyptian Science, 1995, pages 321 - 324
[3] Richard J.Gillings,Mathematics in the time of the Pharaohs, 1981
[4] http://softsurfer.com/history.htm (History of geometry)

H.B. Sahana
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Rigour in Mathematics

This section aims to introduce advanced topics in mathematics to students. It
serves to stimulate interest in different branches of mathematics and lay the
foundation for further study.
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Lebesgue Measure and Integration

Abstract

In 1902, Henri Lebesgue presented an extension of the Riemann
integral. Lebesgue’s approach provided the ideal tool for research into trou-
blesome issues not solvable by Riemann Integration. This paper discusses
the basics of the concept of the ”measure” of a set and how it is employed
to overcome certain flaws with Riemann Integration, by using Lebesgue’s
approach to Intergration.

RIEMANN INTEGRATION AND ITS DRAWBACKS

We recall that if f is a bounded real valued function defined on the interval
[a, b] and a = xo < x1 < x2... < xn = b is a partition of P [a, b], then we
can define:

SP =
n∑
i=1

(xi − xi−1)Mi and sP =
n∑
i=1

(xi − xi−1)mi

where:
Mi = sup(f(x)) for xi−1 ≤ x ≤ xi
mi = inf(f(x)) for xi−1 ≤ x ≤ xi

We then define the upper Riemann integral of f by:
R

∫̄
f(x)dx = inf{SP — where P is a parition of [a, b]}

Similarly the lower integral is defined as:
R

∫
f(x)dx = sup{SP — where P is a parition of [a, b]}

If the two are equal then we say that f is Riemann integrable and call this
value the Riemann integral of f and denote it by R

∫ b
a
f(x)dx.

Another way of computing the Riemann integral of a function f is by approx-
imating the area under the curve of the function by constructing a partition P
of the domain [a, b] and constructing a step function g approximating f and
estimating the area under the graph of f by the area under the graph of the
step function. This approximate area tends to a specific limit as the norm of
the partition P tends to 0 and if the function f is Riemann integrable, i.e.,
we define:

g(x) = f(ξi) ∀ x ∈ [xi−1, xi]

where ξi ∈ [xi−1, xi] is arbitrarily chosen and fixed.
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and S(f, P ) =
n∑
i=1

f(ξi)l(xi−1, xi), where l(xi−1, xi) = xi − xi−1

∫ b

a

fdx = lim
||P ||→0

(S(f, P ))

Interpretation: Essentially, Riemann integration involves computing the
area under the curve of a function by calculating the area of rectangles
under the curve by partitioning the domain.

Characterisation of Riemann Integrable Functions

It can be shown that all continuous functions are Riemann integrable.
Although there are non continuous functions that are Riemann integrable(e.g.,
Step function), we will see that a function is Riemann Integrable iff it is
essentially continuous.

Set of measure zero: A subset E of R is said to have measure zero if
for each ε > 0, there exists a sequence {In}n of open intervals such that
E ⊂

⋃
n

In and
∑
n

l(ln) < ε.

We now define an essentially continuous function as one whose set of points
of discontinuity has measure zero.

Shortcomings of Riemann Integration

1) The class of Riemann integrable functions is relatively small.

eg: Define

f(x) = IQ =

{
0 if x is irrational
1 if x rational

Then, the lower integral of f (=0) and upper integral of f (=1) are not
equal and hence f is not Riemann Integrable on [0,1] even though it
is a bounded function.

2) Riemann integral does not have satisfactory limit properties. That is,
given a sequence of Riemann Integrable functions {fn} with a limit
function f = lim

n→∞
fn. It does not necessarily follow that the limit

function f is Riemann integrable. eg.:
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Let {ak} be an enumeration of all the rationals in [0, 1] (possible as
rationals are countable).

Define gk(x) =

{
1 , x = aj ≤ ak
0 , otherwise

The function gk is zero everywhere except on a finite set of points,
hence its Riemann integral is zero. The sequence gk is also clearly
non-negative and monotonically increasing to IQ, which is not Riemann
integrable.

A NEW APPROACH: LEBESGUE INTEGRATION

An equally intuitive, but long in coming method of integration, was presented
by Lebesgue in 1902. Rather than partitioning the domain of the function,
as in the Riemann integral, Lebesgue chose to partition the range.

Thus, for each interval in the partition, rather than asking for the value of
the function between the end points of the interval in the domain, he asked
how much of the domain is mapped by the function to some value between
the two end points in the range.

Partitioning the range of a function and counting the resultant rectangles
becomes tricky since we must employ some way of determining (or
measuring) how much of the domain is sent to a particular portion of a
partition of the range. Measure theory addresses just this problem.

Measure Theory

Given an interval E = [a, b] and a set S of subsets of E which is closed
under countable unions and contains one empty set, we define the following:
A set function µ on S is a function which assigns to each set A ∈ S a real
number and satisfies the following properties:

• Semi-Positive-Definite: 0 ≤ µ(A) ≤ b− a ∀ A ∈ S.

• Trivial case µ(φ) = 0

• Monotonicity: µ(A) ≤ µ(B) ∀ A,B ∈ S with A ⊂ B
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• Countable Additivity: If A =
∞⋃
n=1

An then

µ(A) =
∞∑
n=1

µ(An) where An ∈ S are pairwise disjoint for n = 1, 2, ....

We define Lebesgue Outer Measure of a subset E of R by:

m∗(E) = inf(
∞∑
n=1

{l(In) : E ⊂
∞⋃
n=1

In}

where the infimum is taken over all coverings of E by countable unions of
intervals.

Interpretation: The outer measure of E is the infimum of certain overesti-
mates of lengths of E since the sum of the length of non-disjoint intervals
will be an overestimate of the length of their unions.
Properties:

1) 0 ≤ m∗(E) ≤ ∞ for any E

2) If E ⊂ F , then m∗(E) ≤ m ∗ (F )

3) m∗(E + x) = m∗(E) ∀ x ∈ R

4) m∗(E) = 0 for any countable set E

5) m∗(E) <∞ for any bounded set E

6) m∗(I) = l(I) for any interval I , bounded or not

7) m∗(E) = inf{
∞∑
n=1

(bn − an) : E ⊂
∞⋃
n=1

(an, bn)}

In case of a collection of countably many pairwise disjoint open sets, m∗

countable additive. However, there are cases where the countable additivity
of m∗ fails.

We can isolate a large class of sets on which m∗ is countably additive.
Specifically, we say that a set E is (Lebesgue) measurable if, for each ε > 0,
∃ closed set F and an open set G with F ⊂ E ⊂ G such that m∗(G ∼ F ) < ε

It can be shown that the following sets are measurable:
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• any interval, bounded or otherwise

• empty set

• a complement of measurable set

• any open or closed set

• union or intersection of countable number of measurable sets.

• difference of measurable sets

An example of a non measurable set is the Vitali Set:

Vitali Set: Axiom of Choice: ’For any set X of nonempty sets, there exists
a choice function f defined on X’ where, a choice function maps every set
to one of its elements.

To construct a Vitali set V , consider the additive quotient group R/Q. Each
element of this group is a ”shifted copy” of the rational numbers: a set of
the form Q + r for r ∈ R. Thus, the elements of this group are subsets of R
and partition R. There are uncountably many elements in this group. Since
each element intersects [0, 1], we can use the axiom of choice to choose a set
V ⊂ [0, 1] containing exactly one representative out of each element of R/Q.

It can be shown that the Vitali set V , so constructed, is non-measurable.

Measurable Functions

Let A be a bounded measurable subset of R and f : A → R be a function.
Then f is said to be measurable on A if {x ∈ A|f(x) > r} is measurable
(as a subset of R) for every real number r.
The function f is measurable if the shaded region of the domain is measurable
as a subset of R for all choices of the real number r.

Integrating Bounded Measurable Functions

Let f : A→ R be a bounded measurable function on a bounded measurable
subset A of R. Let l = inf{f(x)|x ∈ A} and u > sup{f(x)|x ∈ A}
where u is arbitrary in so far as it is greater than the least upper bound of
f on A.

As with the Riemann integral, we’ll define the Lebesgue integral of f over
an interval A as the limit of some Lebesgue sum.
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The Lebesgue sum of f with respect to a partition P = {l = y0 < ... <
yn = u} of the interval [l, u] is given as :

L(f, P ) =
n∑
i=1

y∗im
∗{x ∈ A | yi−1 ≤ f(x) ≤ yi}

where y∗i ∈ [yi−1, yi] for = 1, ..., n and f is a bounded measurable function
over a bounded measurable set A of R.

This is the new way to count rectangles; the y∗i is the height of the rectangle
and the m({x ∈ A | yi−1 ≤ f(x) ≤ yi}) serves as the base of the rectangle.
The definition of the actual Lebesgue integral is virtually identical to that of
the Riemann integral using sum function.

A bounded measurable function f : A → R is Lebesgue integrable on A
if there is a number L ∈ R such that, given ε > 0∃ a δ > 0 such that
|L(f, P ) − L| < ε whenever ||P || < δ. Lis known as the Lebesgue integral
of f on A and is denoted by

∫
A
fdm

Simple Functions: A simple function is a finite linear combination of
indicator functions of measurable sets. More precisely, let (X,Σ) be a
measurable space. Let A1, ..., An be a sequence of measurable sets, and let
a1, ..., an be a sequence of real or complex numbers. A simple function is a
function of the form:

ϕ(x) =
n∑
k=1

akIAk
(x)

Lebesgue Integration of Simple Functions

For a simple function ϕ defined on R as above, is:∫
ϕ =

∫
R
ϕ =

∫ ∞
−∞

ϕ(x)dx =
n∑
i=1

aim(Ai)

Advantages of Lebesgue Integration

• Limit of a sequence of Lebesgue integrable functions is also Lebeague
integrable.

• Class of Lebesgue integrable functions is larger than that of Riemann
integrable functions. eg.:
Consider:

f(x) =

{
0 x is irrational
1 x is rational
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then, f(x) = IQ, therefore,
∫
f = 1.m(Q) = 1.0 = 0

Hence, we can see that Lebesgue’s approach to integration is a useful tool
for mathematicians and the basis for many branches of mathematics.

References
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[3] Joshua H. Lifton, Measure Theory and Lebesgue Integration, 1999
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Construction of the Real Number System

Abstract

In this paper we show that R is the only complete Archimedean ordered
field. We give two approaches to completeness for Archimedean ordered
fields and conclude that they are equivalent.

DEFECT IN RATIONALS

Although we have noticed that the set of rationals Q forms a rich algebraic
system having order properties, it is inadequate for the purpose of analysis.
We have already noticed that not every positive rational number has a
rational square root. For example we have seen that there is no rational
number whose square is 2. The defect in the rationals which we wish
to describe here may be described in a variety of ways. One form of
the defect that we have already noticed is that a nonempty subset of
rational numbers that is bounded above need not have a least upper
bound (in the set of rationals). A slighty less standard approach which
is more picturesque is that there are open lower segments in Q without
having right end points in Q, and we consider this to be a defect. For this
purpose, we define the notion of an open lower segment in the set of rationals.

Definition 1:A set J ⊂ Q is called an open lower segment if

1) J 6= ∅,
2) J 6= Q,

3) For every x ∈ J , there is a y ∈ J such that y > x,

4) If x ∈ J and y < x then y ∈ J .

A point x will be called the right end point of an open lower segment J if

1) for every y ∈ J , x > y,

2) if z is such that for every y ∈ J , z > y, then z ≥ x.

For example, consider J ⊂ Q to be the set of all non-positive rational
numbers, together with the positive rational numbers whose square is less
than 2. Then J is an open lower segment of Q having no right end point in
Q
Note. If a right end point of J exists, it is unique, and is the smallest rational
greater than every element of J .
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THE REAL NUMBERS

The set of real numbers is an extension of the set of rational numbers,
which removes the defect described above. We will see that the real numbers
are an Archimedean ordered field in which every open lower segment
has a right end point. The real numbers are obtained from the rationals
by what may be described as filling the gaps. In other words we add
right end points as ideal elements, or new numbers, to correspond to those
open lower segments which do not have right end points among the rationals.

One way of doing this is to consider the open lower segment itself to be a
substitute for its own right end point. One can see that this is an entirely
natural approach when one agrees that open lower segments are to be in
one-to-one correspondence with their right end points.

In accordance with the above, the set R of real numbers is defined to be the
set of open lower segments of rational numbers.

We first define addition in R.

Let I and J be real numbers i.e., open lower segments of rational numbers.
Define I + J as

I + J = {x+ y : x ∈ I, y ∈ J}

We show that I + J is an open lower segment.

Let x ∈ I and y ∈ J , so that x + y ∈ I + J , and let u < x + y. Then we
can write u = x + z, where x ∈ I and z(= u − x) < y, so that z ∈ J . So,
u ∈ I + J . Next there is a z > y such that z ∈ J . So, x + z > x + y and
x+ z ∈ I + J . Now, it follows that I + J is an open lower segment.
We have

I + J = J + I

and that
(I + J) +K = I + (J +K)

follows directly from the definition of ′+′ in R and commutative and
associative properties of Q.
Let O be the open lower segment of negative rational numbers. One can
verify that

I +O = I ∀ I ∈ R

Finally, the equation
I +X = J
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has a solution for every I, J ∈ R. We simply let X consist of all x such
that y + x ∈ J for every y ∈ I , except for the largest such x if there is one.
The solution of I +X = O is designated −I .

An order relation is introduced in R by letting

I > J if I ⊃ J

Thus R becomes an ordered set. Clearly I > O if and only if I contains a
positive rational.

We now define multiplication in R. If I > O, J > O we define IJ as the
set of all nonpostive rationals together with all xy where x ∈ I , x > 0, and
y ∈ J , y > 0

If I = O or J = O we define IJ = O. If both I < O and J < O we define

IJ = (−I)(−J)

If exactly one of I, J is less than O, say I < O, we define

IJ = −(−I)(J)

Now one can show that R is an ordered field. The complete details can be
found in [2].

Moreover, R is Archimedean. Let I > O, J > O. Then there exists a positive
rational x ∈ I and an n ∈ N such that nx /∈ J , since Q is Archimedean and
I, J are open lower segments. Thus, it follows from the trichotomy property
of R that nI > J .

Then J ∈ R for which J has a rational right end point are in one-to-one
correspondence with the rational numbers, the associated mapping is
order-preserving and addition and multiplication preserving.

Thus, Q is imbedded in R, or that Q is isomorphic to an ordered subfield of
R. We call this subfield the rational numbers and hence will use small letters
for elements of R in Theorem 2.
We now define open lower segments of reals and their right end points in
the same way as for rationals.

Theorem 1: Every open lower segment of reals has a right end point.

Proof: Let I be an open lower segment of reals. Let

U =
⋃
{J : J ∈ I}
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We show that U is an open lower segment of rationals i.e., U ∈ R. Let x ∈ U .
Then there is a J ∈ I such that x ∈ J . For every y < x, y ∈ J ⊆ U . Also
there is a y ∈ J ⊆ U such that y > x. Moreover, there is an I /∈ I since
I is an open lower segment of reals. Then x /∈ I implies x /∈ U because if
x ∈ U , then x ∈ J for some J ∈ I which implies I ⊂ J and hence I ∈ I, a
contradiction. Thus U is an open lower segment of rationals. We now show
that U is the right end point of I. By definition of U , U > J for every
J ∈ I. Suppose V > J for every J ∈ I. Then V ⊃ U , so that V ≥ U .
Hence U is the right end point of I
.
We give another form of Theorem 1 which is referred to as the least upper
bound property (or completeness property in th sense of Dedekind) of the
set of real numbers R

Theorem 2: If S ⊂ R is nonempty and has an upper bound, it has a least
upper bound.

Proof: If the given upper bound belongs to S then that will only be the least
one and we are done. So we assume that no upper bound for S is in S.
Now we define a set U by letting x ∈ U if and only if there is a y ∈ S such
that y > x. We show that U is an open lower segment of reals. If x ∈ U
and z < x then z ∈ U by definition of U . Also, if x ∈ U then there is a
z ∈ U such that z > x since no upper bound for S is in S. Moreover, every
upper bound of S is not in U . Thus, U is an open lower segment of reals,
and so it has a right end point,say u by Theorem 1. We show that u = supS.

Let x ∈ S. Then y < x implies y ∈ U so that y < u. Hence x ≤ u (since
u < x⇒ u ∈ U which is a contradiction). Thus, u is an upper bound of S.
Let y < u. Then y ∈ U since U is an open lower segment and u is its right
end point. So there is an x in S with y < x. Thus y is not an upper bound
of S. Hence u = supS.

Thus it is actually the property of Theorem 1 that is being used to obtain all
further properties of the real numbers. Thus, the fact that R is a complete
Archimedean ordered field is basic to all further developments.

The Theorem 3 below shows that R is the only complete Archimedean
ordered field.
Theorem 3: Any two complete Archimedean ordered fields F1 and F2, with
sets of positive elements P1and P2, respectively, are algebraically and order
isomorphic, i.e., there exists a one-to-one mapping τ of F1 onto F2 such that

τ(x+ y) = τ(x) + τ(y), τ(xy) = τ(x)τ(y), τ(x) ∈ P2 iff x ∈ P1.
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Proof: Let 11 and 12 be the units of F1 and F2 and 01 and 02 the zeros.
Note that every ordered field contains an isomorph of Q. So we define the
mapping τ first on the rational elements of F1 as follows:

τ(mn 11) = m
n 12

where m is an integer, n is a nonzero integer

If x ∈ F1 and x is not of the form m
n 11, then we define

τ(x) = sup{m
n

12 :
m

n
11 < x}

One can prove that τ has the desired properties.

We now give another construction of the real number system in which a real
number is defined as an equivalence class of Cauchy sequences of rational
numbers.

Definition 2: Let F be an ordered field. A sequence (an) of elements of F
is called bounded if there is an element b ∈ F such that |an| ≤ b for each
positive integer n.

Definition 3: A sequence (an) of elements of F is called Cauchy if for
every e ∈ F such that e > 0, there is a positive integer N such that
|ap − aq| < e for all p, q ≥ N .

Definition 4: A sequence (an) of elements of F is called null if for every
e ∈ F such that e > 0, there is a positive integer N such that, |ap| < e for
all p ≥ N .

The families of sequences satisfying these conditions will be denoted by B,
C and N respectively.

We now state few theorems and lemmas (without proofs) before stating
the two important results which concern the main theme of this paper. The
details of the proofs can be found in [3].

Theorem 4: The inclusions N ⊂ C ⊂ B is obtained.

Theorem 5: For (an), (bn) ∈ C, let (an) + (bn) = (an + bn) and
(an)(bn) = (anbn). With these definitions of sum and product, C is a
commutative ring with unity, and N is an ideal in C such that N ( C.

Theorem 6: Let C/N denote the set whose elements are the sets (an) +N
(called cosets of N ), where (an) ∈ C. Addition and multiplication in C/N
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are defined by

((an) +N ) + ((bn) +N ) = (an) + (bn) +N = (an + bn) +N and

((an) +N )((bn) +N ) = (an)(bn) +N = (anbn) +N

These definitions are unambiguous, and with addition and multiplication so
defined, C/N is a field

Notation: The field C/N will be written as F̄ . Henceforth elements
(an) +N of C/N will be denoted by small greek letters: α, β, ... . If a ∈ F
then the element (an) + N of F̄ will be written as ā; it is the coset of N
containing the constant sequence all of whose terms are a.

Theorem 7: In F̄ , let P̄ = {α ∈ F̄ : α 6= 0̄ and there exists (an) ∈ α such
that an > 0 for n = 1, 2, ...} With this set P̄ , F̄ is an ordered field. The
mapping τ : τ(a) = ā is an order preserving algebraic isomorphism of F
into F̄ .

Definition 5: Given a sequence (an) in an ordered field F and b ∈ F , we
say that limit of (an) is b and we write

lim
n→∞

an = b or an → b

if for every positive e in F there exists a positive integer L such that
|an − b| < e for all n ≥ L. An ordered field is said to be complete (in the
sense of Cantor) if every Cauchy sequence in F has a limit in F .

Lemma 1: A sequence with a limit is a Cauchy sequence. If (an) is a
Cauchy sequence and (ank

) is a subsequence with limit b, then (an) has
limit b.

Lemma 2: For α > 0, α ∈ F̄ , there exists e ∈ F such that 0̄ < ē < α. If F
is Archimedean ordered, then F̄ is also Archimedean ordered.

Lemma 3: Let α ∈ F̄ and (an) ∈ α. Then we have

lim
n→∞

ān = α

We now state the two important results mentioned above.

Theorem 8: The field F̄ is complete (in the sense of Cantor).

The following Theorem 9 below shows that a complete Archimedean ordered
field (complete in the sense of Cantor) is also complete Archimedean ordered
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field (complete in the sense of Dedekind).

Theorem 9: Let F be a complete Archimedean ordered field (complete in
the sense of Cantor), and let A be a non empty subset of F that is bounded
above. Then supA exists.

Note: Theorem 3 above also holds for complete Archimedean ordered fields
(complete in the sense of Cantor).

So, we have the following definition:

Definition 5: The real number field R is any complete ordered field. For
example,Q̄.

Conclusion: We see that the two approaches to completeness for
Archimedean ordered fields are equivalent. So for the reals it is entirely a
matter of choice which approach one prefers. However, there are situations in
which the Cauchy sequence approach is the only one possible.For example,
in the field of complex numbers C which is not ordered (∵ ι 6= 0 but
ι2 = −1 < 0) Theorem 8 which is another version of the completeness
property for fields does not require the order relation, < . It is a useful axiom
to consider for other fields other than ordered fields. All that is required is
the distance function d(x,y) to have meaning in that field .
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Fuzzy Logic in Action

Abstract

This paper introduces Fuzzy logic which is a form of multi-valued logic
derived from fuzzy set theory to deal with reasoning that is approximate
rather than precise. The fuzzy logic variables have a membership value
between 0 and 1, that is, the degree of truth of a statement is in the
range of 0 and 1 and is not constrained to the two truth values of classic
propositional logic. Fuzzy logic has been applied to many fields, from
control theory to artificial intelligence.

FUZZY SET

Fuzzy sets are the sets whose elements have degrees of membership. Fuzzy
sets were introduced by Lotfi A. Zadeh (1965) as an extension of the classical
notion of set. In classical set theory, the membership of elements in a set is
assessed in binary terms according to a bivalent condition - an element either
belongs or does not belong to the set. By contrast, fuzzy set theory permits the
gradual assessment of the membership of elements in a set. This is described
with the aid of a membership function valued in the real unit interval [0,
1]. The fuzzy set theory can be used in a wide range of domains in which
information is incomplete or imprecise, such as bioinformatics.

DEFINITION

Let X be some set of objects, with elements noted as x. A fuzzy set A in X
is characterized by a membership function mA : X → [0.0, 1.0]. As mA(x)
approaches 1.0, the ”grade of membership” of x in A increases.

• x is called ’not included’ ; if mA(x) = 0.0,

• x is called ’fully included’ ; if mA(x) = 1.0,

• x is called ’fuzzy member’ ; if 0.0 < mA(x) < 1.0.

• A = B iff for all x : mA(x) = mB(x) [or, mA = mB].

• mA′ = 1−mA.
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• A ⊂ B iff mA ≤ mB.

• C = A ∪B, where: mC(x) = max(mA(x),mB(x)).

• C = A ∩B where: mC(x) = min(mA(x),mB(x)).

UNDERSTANDING FUZZY

To understand the concept of fuzzy, we consider an example.

Suppose, a question is posed: ’Is that person over 180 cm feet tall?’. This
question has only two answers: YES or NO. On the other hand, the question
’Is that person tall?’ has many answers. Someone over 190 cm is universally
considered to be tall. Someone who is 180 cm may be considered to be sort
of tall, while someone who is under 160 cm is not usually considered to be
tall.

The graph has a value 0 for any value under 160 (people under 160 cm
are not tall) and a value of 1 for any value over 190 cm (people who are
over 190 cm are tall) and varying degrees of membership in the set of
people who are tall for values between 160 and 190. This graph is called
the membership function of the fuzzy set of people who are tall.

Consider another statement: ”Jane is old.”

If Jane’s age was 75, the statement could be translated into set terminology
as follows:
”Jane is a member of the set of old people.”
This statement would be rendered symbolically with fuzzy sets as:

mOLD(Jane) = 0.80 (say)

Where m is the membership function, operating in this case on the fuzzy
set of old people, which returns a value between 0.0 and 1.0. As we notice,
fuzzy systems and probability are quite similar. Both operate over the same
numeric range, and at first glance both have similar values. However, there
is a distinction to be made between the two statements. The probabilistic
approach yields the natural-language statement,”There is an 80% chance that
Jane is old,” while the fuzzy terminology corresponds to ”Jane’s degree of
membership within the set of old people is 0.80”. The difference is significant:
the first view supposes that Jane is or is not old; it is just that we only have
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an 80 chance of knowing which set she is in. By contrast, fuzzy terminology
supposes that Jane is ”more or less” old, or some other term corresponding
to the value of 0.80

APPLICATION OF FUZZ THEORY

Fuzzy logic is used in the operation or programming of air
conditioners, cameras, digital image processing, elevators, microcontrollers,
microprocessors, washing machines and many more.

We consider one such application : fuzzy logic in the working of air
conditioners:
The main aim of an air conditioner is to regulate temperature and humidity.
An air conditioning system is shown in figure below. There are two sensors in
this system: one to monitor temperature and one to monitor humidity. There
are three control elements: cooling valve, heating valve, and humidifying
valve.

Air Conditioning System

Fuzzy Controller for Air Conditioning System

The following rules are taken into account:

• If temperature is low then open heating valve.
For example, in the winter, when we use heat to raise temperature,
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humidity is usually reduced. The air thus becomes too dry.

• If temperature is low then open humidifying valve slightly.

• If humidity is low then open humidifying valve slightly,

The air conditioner measures air temperature and then calculates the
appropriate motor speed. The system uses rules that associate fuzzy sets
of temperatures, such as ”cool,” to fuzzy sets of motor outputs,such as
”slow.” If a temperature of 68◦ Farenheit is 20% ”cool” and 70% ”just right”
the system tries to run its motor speed that is 20% ”slow” and 70% ”medium”.

Thus, most modern systems in day to day life have some fuzzy aspect in it!
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[2] Petr Hájek, Fuzzy Logic and Arithmetical Hierarchy,1995
[3] www.austinlinks.com/Fuzzy/tutorial.html
[4] http://plato.stanford.edu/

Divyanka Kapoor
Pallavi Singh
II Year



29

Extension of Course Contents

The paucity of time restricts us to our course content. Thus we wish to
present this section which wil go beyond the scope of our text and will
introduce concepts which are intriguing and also strengthen our knowledge
and understanding.
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Continuum Hypothesis

Abstract

This paper deals with the counting of the number of elements in an
infinite set and the comparison of the infinities of different degrees.

Consider the following question:

If S1 and S2 are two circles having radii 1 and 2 units respectively, then
which of the two has more number of points on its circumference?

For a layman, the answer may possibly be the bigger one, but for a person of
mathematics the answer would be - both the circles have the same number
of points! The argument for the assertion is simple. By drawing radii PP ′

and QQ′ etc., we can pair up any point on the larger circle with a point on
the smaller one and vice-versa. Hence the number of points (infinite) on the
larger circle is same as the number of points (infinite) on the smaller one,
though the length of the circumference of the large one is twice as that of
the smaller one.

The same type of question can be asked about the set of natural numbers,
set of even natural numbers, set of integers, set of rational numbers, set of
real numbers etc. One may note that the problem posed above is in fact
nothing but just that of counting the size of infinite sets or comparing the
size of different infinities.

Counting the size of infinite sets was due until the late 19th century when
a comprehensive theory of mathematical infinities was finally developed by
George Cantor (1845-1918) in 1874.

In fact counting the number of elements in a set is precisely to determine
its cardinality. Cardinality of a given set S means the number of element
in it, denoted as #S. If a set S contains n number of elements, then its
cardinality is n, i.e., #S = n, and the number n itself, is called the finite
cardinal number. If a set contains an infinite number of elements, then its
cardinality is called a transfinite cardinal number.

Based upon the number of elements, we divide the sets into two categories
(i) finite sets and (ii) infinite sets. The latter can further be classified as
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denumerable and uncountable sets. To define these sets, we first define the
equivalence of two sets.

Two sets A and B are said to be equivalent if there exists a 1-1 and onto
correspondence between the sets A and B, and is denoted as A ∼ B. More
elaborately, two sets are equivalent if they have the same number of elements.

A set, say S, containing n elements, is said to be finite if there exists a 1-1
and onto correspondence between the set S and the set {1, 2, 3, ... , n}. Then
we say that, S ∼ {1, 2, 3, ..., n}, and #S= n. In fact, the natural numbers
along with singleton {0}, are sufficient to give the cardinality of any finite set.

Cantor defined an infinite set as the one which can be put into 1-1 and onto
correspondence with a proper subset of itself. This had been proposed in
1872 by the German mathematician Richard Dedekind as - the whole is
equivalent to a part of it. A classic example to understand it is that of the
Hilbert’s paradox of the Grand Hotel [5].

In fact, different characterizations of size, when extended to infinite sets,
break various rules which hold for finite sets.

A set S is said to be denumerable if S ∼ N, and its cardinality is denoted
by ℵ0 (read as aleph nought), which in fact, is the first transfinite cardinal
number, i.e., the cardinality of N is ℵ0. The symbol ℵ is the first letter of
Hebrew script, and was given by Cantor. Here it is essential to understand
that, ℵ0 is just a symbol/thought, and saying a set to have cardinality ℵ0

simply means that it has as many number of elements as the natural numbers.

An uncountable set means a non empty set which is not denumerable.

Now, with these definitions we are in a position to answer the question
asked in the beginning.

The set of natural numbers N has the same number of elements as the
set of even natural numbers 2N, since ∃ the map f : N → 2N defined
by f(n) = 2n which is 1-1 and onto, i.e. N ∼ 2N and hence #2N = ℵ0.
Likewise, the map f : N→ Z defined by:

f(n) =

{
n
2 , if n is even
−n−1

2 , if n is odd
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is 1-1 and onto, i.e.N ∼ Z, and hence #Z = ℵ0.

Now let us think about the cardinality of Q, the set of rational numbers.
Since we know that between any two rational numbers we can find an
infinitely many rational numbers, one may feel tempted to know the count
of Q. Is it more than #N? But, here comes another amazing fact that, N ∼ Q
i.e., #Q = N[2].

Now let us talk about the cardinality of R, the set of real numbers. There
are two possibilities, either R ∼ N or R 6∼ N. The fact is that, there exists
no 1-1 and onto correspondence between R and N. The explanation for the
same is not certainly direct. The idea is as follows.

The interval [0, 1] 6∼ N, i.e., the interval [0, 1] is uncountable[2]. Further,
we have

1) [0, 1] ∼ ]0, 1[ due to the function defined by

f(x) =


1
2 if x = 0

1
n+2 if x = 1

n , n ∈ N
x, if x 6=, 1

n , n ∈ N

2) [0, 1] ∼ R due to the function defined by

f(x) =

{
2x−1
x if 0 < x < 1

2
2x−1
1−x if 1

2 ≤ x < 1

The cardinality of [0, 1] is denoted by C. The letter C stands for continuum
and refers to the Cantor’s Continuum Hypothesis. Since [0, 1] ∼ ]0, 1[ ∼ R
, the cardinality of all these sets is C. Now before we write ℵ0 < C, let us
assign a meaning to the comparison of two cardinal numbers.

If A and B are any two sets, then we say that #A < #B if A is equivalent
to some proper subset of B but not equivalent to B.

Hence the cardinality of N is less than the cardinality of R . Notice that
though both the cardinalities are transfinite, they are comparable. i.e., we
have two infinities, one bigger than the other in a certain sense. Having done
so, let us consider the following two questions.

Question 1. Is there any transfinite cardinal number greater than C? Or, is
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there a largest transfinite cardinal number?

The answer to this question is given by the following fact:

For any set A, we always have #A < #P (A), where P (A) denotes the
power set of A.[6]

Now consider the set F = {collection of all functions f : A → B}
where A and B are any two non empty sets. If #A = α
and #B = β, then #F = βα [3]. In particular, if we take
F ′ = {collection of all functions f : A→ {0, 1}}, then #F = 2α.

Now P(A) ∼ F ′, since we have the function φ : P (A) → F ′ defined by
φ(B) = χB for B ∈ P (A), which is 1-1 and onto, where χ denotes the
characteristic function.

Therefore, #P (A) = 2α. Further, in particular, if we take A to be N, then
we have #P (N) = 2ℵ0 . Hence ℵ0 < 2ℵ0 .

Now, let us re-denote 2ℵ0 by ℵ1. Then on taking P (P (N)), we get ℵ1 < 2ℵ1 .
Then re-denoting 2ℵ1 by ℵ2, and then taking P (P (P (N)))) we get ℵ2 < 2ℵ2 ,
and so on. Thus, we have a trail of transfinite cardinal numbers as below

ℵ1 < ℵ1 < ℵ2........

Now, if we consider F ′′ = {collection of all functions f : N → {0, 1}},
then F ′′ ∼ R [4], i.e., 2ℵ0 = C.

Thus, the answer to Quesion 1 is complete.

The above question leads to another meaningful but difficult question.

Question 2. Is C the second transfinite cardinal number? Or, does there
exist some transfinite cardinal number between ℵ0 and C?

The answer to the above question is in fact the Cantor’s Continuum
Hypothesis.

The origin of this problem may be an analogous behaviour of finite cardinal
numbers, where if n > 1, then there always exists a cardinal number



34

between n and 2n.

According to the Cantor’s Continuum Hypothesis:

there exists no transfinite cardinal number between ℵ0 and C.

The hypothesis is still unsolved, and two of the answers available to this are
the following:

Kurt Godel(1940): It cannot be disproved
Paul J. Cohen(1963): It is un-decidable

In fact, in 1963 it was shown that the continuum hypothesis is independent
of the axioms of set theory in the same sense, as the Euclid’s 5th postulate
on parallel lines is independent of the other axioms of geometry.
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Dihedral Groups

Abstract

This paper gives a brief insight into a very basic understanding of
dihedral groups. Starting with the concept of symmetry, which includes
rotational and reflectional symmetries, a formal definition of dihedral
groups is coined (in terms of generators and relations). Further this paper
discusses the notation, order and certain basic properties of dihedral groups
with the help of detailed study of dihedral group D8. This paper also
reflects upon the presence of dihedral groups in our surroundings and their
applications in various other disciplines.

INTRODUCTION

Symmetries and Permutations in nature and in mathematics can be
described by an algebraic structure called a group. If F is a figure in the
plane or in space, a symmetry of the figure F is a bijection f : F → F
which preserves distances; that is, for all points p, q ∈ F ,the distance from
f(p) to f(q) must be the same as the distance from p to q. The set of all
symmetries of a geometric figure forms a group under suitable composition.

A set of generators {g1, g2....gn} is a set of group elements such that possibly
repeated application of the generators on themselves and each other is capable
of producing all the elements in the group. A group generated by one element
is called a cyclic group denoted as G =< a >= {an = e : n ∈ Z+}. For
example, G3 =< a >= {e, a, a2} where a3 = e.

• All cyclic groups just have rotational symmetry.

Consider the case when a group G is generated by two elements x and y.
Then group G is defined as G = {x, y : xn = ym = e}, where n,m ∈ Z
and e is the identity of the group G. Such a description of a group in terms
of its generators and their relations is called a presentation of G. Here G
is an infinite non-abelian group. Similarly, consider the case when a finite
non-abelian group G is generated by two elements x and y a and group G
is defined as

G = {x, y : xn = e, y2 = e;xy = yx−1}

The above presentation is that of a dihedral group where x denotes the
rotation and y denotes the reflection.
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DEFINITION OF A DIHEDRAL GROUP

A dihedral group is a group of symmetries of a regular polygon including
both rotations and reflections.

A regular polygon with n sides has 2n different symmetries: n rotational
symmetries and n reflection symmetries.

The associated rotations and reflections make up the dihedral group D2n.

Label the n vertices of an n-sided regular polygon as 1,2,3.....n. In general,
if r be the rotation anticlockwise about the origin through 2π/n radian and
s be the reflection about the line of symmetry through vertex 1 and the
origin, then a dihedral group is written as:

D2n =< r, s|rn = s2 = e, rs = sr−1 >

NOTATION

There are two competing notations for the dihedral group associated to a
polygon with n sides. In geometry the dihedral group is denoted as Dn

while in algebra the same group is denoted by D2n to indicate the number
of elements i.e. the order of dihedral groups = 2n ; where n = number of
sides of a regular polygon. (Throughout this paper, the notation D2n is used.)

Observe that given any vertex i (0 ≤ i ≤ n− 1), there is a symmetry which
sends vertex 1 into position i. Since vertex 2 is adjacent to 1, vertex 2 must
end up in position i + 1 or i − 1.Moreover, by following the 1st symmetry
by reflection about the line through vertex i and the centre of the n-gon,
one can see that vertex 2 can be sent to either position i + 1 or i − 1 by
some symmetry. Thus, the ordered pair of vertices 1, 2 may be sent to 2n
positions upon applying symmetry.

Thus there are exactly 2n symmetries of a regular n-gon.

These symmetries are:
• n rotations about the centre through 2πi/n radian, 0 ≤ i ≤ n− 1
• n reflections through n lines of symmetry

When n is odd each symmetry line passes through a vertex and the
mid-point of the opposite side When n is even there are n

2 lines of symmetry
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which pass through 2 opposite vertices and n
2 lines of symmetry which

perpendicularly bisect 2 opposite sides. In either case there are n axes of
symmetry altogether and 2n elements in the symmetry group.

The 2n elements of D2n are e, r, r2, ...rn−1, s, rs, r2s, ..., rn−1s

Clearly rn = e, s2 = e. Also, each element of the group has the form ra

or ras where 0 ≤ a ≤ n − 1 And we can geometrically determine that, for
0 ≤ a, b ≤ n− 1

rarb = rk

ra(rbs) = rks where k = a⊕n b (1)

(ras)rb = rls

(ras)(rbs) = rl where l = a⊕n b (2)

DIHEDRAL GROUP D8

Let us consider the example of D8 represented by a square object.

If we rotate and reflect the square in all possible ways about 4 (n=4,which
is even) lines of symmetry (2 lines of symmetry which pass through two
pair of opposite vertices and 2 which perpendicularly bisect the two pair
of opposite sides), we observe that there are overall 8 possible ways of
repositioning the square object. Therefore, the eight motions are:

R0 = Rotation of 0◦, R90 = Rotation of 90◦, R180 = Rotation of 180◦,
R270 = Rotation of 270◦

H=reflection about the horizontal axis, V =reflection about vertical axis , and
D and D′ represent reflection about the axes about the two diagonals.



38

We now claim that:

Any motion of the square, no matter how complicated is equivalent to
one of these eight

Suppose a square is repositioned by a rotation of 90◦ followed by a reflection
about the horizontal axis of symmetry. The final position so obtained is the
same as the one obtained after applying the motion D. That is, we observe
HR90 = D. This observation suggests that we can compose two motions to
obtain a single motion (and hence the equations 1 and 2). The eight motions
of the square object may be viewed as functions from the set of points
making up the square to the square itself and we can combine them using
function composition.

Therefore, the eight motions: R0, R90, R180, R270, H, V,D,and D′ together
with the operation composition, form a Dihedral Group of order 8. It is
denoted by D8.

PROPERTIES OF DIHEDRAL GROUPS

The following are the properties of dihedral groups D2n defined as:

D2n = {r, s|rn = e = s2, rs = sr−1}

1) 1, r, r2, ....., rn−1 are all distinct and rn = e, so |r| = n.
2) |s| = 2
3) s 6= ri for any i
4) rs = sr−1,this indicates that r and s do not commute so that D2n is

non-abelian. In fact, dihedral groups are the only finite groups generated
by two elements of order 2, such that the two elements are distinct.
However, for n = 1 and n = 2, D2 ≈ Z2 and D4 ≈ Z2 × Z2 (Klien’s
Four-Group) are respectively are two examples of abelian dihedral
groups. For all other values of n(n ≥ 3), D2n is non-abelian.

5) For n ≥ 3, the centre of dihedral group denoted as

Z(Dn) =

{
{R0, R180} when n is even
{R0} when n is odd

Z(Dn) does not contain a reflection(can be proved geometrically).
Also, when n is odd then Dn cannot have a 180◦ rotation.

6) The product of two rotations or two reflections is a rotation; the product
of a rotation and a reflection is a reflection.
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INFINITE DIHEDRAL GROUPS

Consider the real line with the set of integers marked on it. Let G be the
set of functions from the line to itself which preserve distance and which
send integer among themselves. Then G is a group under composition of
functions. Each element of G is a translation to the left or right through an
integral distance, a reflection in an integer point, or a reflection in a point
which lies mid-way between two integers. Let t be the translation to the
right through one unit, so t(x) = x+ 1 and let s be the reflection about the
origin, so s(x) = −x. Then the elements of G are

...., t−2, t−1, e, t, t2, .... and ..., t−2s, t−1s, s, ts, t2s, .....

where e is the identity function. For example, ts(x) = −x + 1 shows that
ts is a reflection in the point 1

2 . The translation t and reflection s together
generate G much like how reflection and rotation generate dihedral group
Dn. Every dihedral group is generated by a rotation r and a reflection s;
if the rotation is a rational multiple of a full rotation, then there is some
integer n such that rn is the identity, and we have a finite dihedral group of
order 2n. If the rotation is not a rational multiple of a full rotation and is
replaced by a translation t of infinite order, then there is no such n and the
resulting group has infinitely many elements and is called Dih∞. It has the
presentation Dih∞ =< r, s|s2 = e, srs = r−1 > where r and s are usual
notations for rotation and reflection.

DIHEDRAL GROUPS AROUND US

The dihedral groups arise frequently in art and nature. Many of the decorative
designs used on floor coverings, pottery and buildings have one of the
dihedral groups as a group of symmetry. Corporation logos are rich sources
of dihedral symmetry. Chrysler’s logo has D10 as a symmetry group, and
Mercedes Benz has D6. The ubiquitous five-pointed Red Star of David has
a symmetry group D12. Sea animals of the family that include starfish,
sea cucumbers, feather stars, and sand dollars exhibit patterns with D10

symmetry group.
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Chemists classify molecules according to their symmetry. Moreover, symme-
try considerations are applied in orbital calculations, in determining energy
levels of atoms and molecules and in the study of molecular vibrations.
The symmetry group of a pyramidal molecule such as ammonia (NH3),
has symmetry group D6. Mineralogists determine the internal structures of
crystals (that is, rigid bodies in which the particles are arranged in three-
dimensional repeating patterns - table salt and table sugar are two examples)
by studying two dimensional X-ray projections of the atomic make up of
the crystals. The symmetry present in the projections reveals the internal
symmetry of the crystal themselves. Commonly occurring symmetry patterns
are D8 and D12. Interestingly, it is mathematically impossible for a crystal
to possess a D2n symmetry pattern n = 5 or n > 6.
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Interdisplinary Aspects of
Mathematics

Mathematics is everywhere around us. The applications of mathematics
are diverse and innumerable. This section highlights such concepts of
mathematics that are used extensively in day to day life. The practical aspect
of mathematics, often overlooked, is what we seek to show in the following
section.



42

Check Digits

Abstract

This paper introduces the concept of check-digits and throws light on its
various applications. A check digit is the last digit of a barcode which
comes into use to verify the accuracy of a barcode and to detect error
while encoding. Barcodes are a part of our day-to-day lives, from the
groceries to the pens, cars to your mobiles. Check digit on the barcode is
the identification.

INTRODUCTION

A check digit is a digit attached to a number, to verify if the number is
valid or not

A check digit, also known as a checksum character, is the number located
on the far right side of a bar code. The purpose of a check digit is to
verify that the information on the barcode has been entered correctly. The
barcode reader’s decoder calculates the checksum by performing a series
of mathematical operations on the digits that precede the check digit, and
comparing the result of the calculation to the value of the check digit.
Typically, if the check digit matches the result of the calculation, the reader
emits a signal (such as a beep) to acknowledge that the results match, and
the scan has been successful It consists of a single digit computed from the
other digits in the message.

With a check digit, one can detect simple errors in the input of a series of
digits, such as a single mistyped digit, or the permutation of two successive
digits. It is an easy way to encourage accuracy.

INTERNATIONAL STANDARD BOOK NUMBERS

The 10-digit ISBN format was developed by the International Organization
for Standardization and was published in 1970 as international standard ISO
2108.

The International Standard Book Number identifies the country of publication,
the publisher and the book itself. In fact, all relevant information in an ISBN
is stored in the first nine digits which are then followed by the check digit.
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If the digits of an ISBN are denoted a1, a2, a3......a10 with the first nine
digits in the range 0-9, then a10 is chosen in the range 0-10 so that

a1 + 2a2 + 3a3 + ........+ 9a9 + 10a10 ≡ 0 mod 11

If a10 happens to be 10, it is recorded as an X.

For example, if we have the given ISBN 0-9553010-0-9

1(0) + 2(9) + 3(5) + 4(5) + 5(3) + 6(0) + 7(1) + 8(0) + 9(0) + 10(9)

= 165 ≡ 0 mod 11

If the ISBN begins 0-93-603103, the tenth digit is chosen so that

1(0) + 2(9) + 3(3) + 4(6) + 5(0) + 6(3) + 7(1) + 8(0) + 9(3) + 10a10

≡ 0 mod 11

Thus,
103 + 10a10 ≡ 0 mod 11

so, a10 = 4
Therefore the check digit will be written as 4.

Now if this number was copied with an error, say in the fourth digit say as
0-93-503103-4,a computer could easily check that,

1(0) + 2(9) + 3(3) + 4(5) + 5(0) + 6(3) + 7(1) + 8(0) + 9(3) + 10(4)

= 139 ≡ 7 6≡ 0(mod11)
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UNIVERSAL PRODUCT CODE

A universal product code is a way to represent a universal product number
as a pattern of black and white stripes of various thicknesses. It is a number
and bar code that identifies an individual consumer product. Most goods for
sale today can be identified by its unique UPC number.
The universal product numbers are 12-digit numbers of the form x-xxxxx-
xxxxx-x, where each x stands for a single digit between 0 and 9.the last digit
here is the check digit. The check digit is calculated by the rule;

3(sum of odd positioned digits) + (sum of even positioned digits)

≡ 0 mod 10

eg.

For the above barcode we have:
3(1+5+0+7+1+5) + (2+0+2+4+3+a12 ) = 0 mod 10 ⇒ a12 = 0 ⇒ 0 is

our check digit.

Error Correcting Using the Check Digit

Let a barcode be U1U2U3U4U5U6U7U7U8U9U10U11U12 where each Ui,
i = 1, 2....12 is the digit at the ith place. We can always correct the error in
case one of the bars is unreadable by the following formula:

X = Y − (W + Z)

where,
X = any single bar that is unreadable
W = 3(U1 + U3 + U5 + U7 + U11) + (U2+? + U6 + U8 + U10)
Y = Integer divisible by 10 and greater than W
Z = U12 = Check Digit

For Example: Let a barcode be given where one of its bar is unreadable:

0-12?4567890-5
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X = Y - (W + Z)
W = 3(0 + 2 + 4 + 6 + 8 + 0) + (1+? + 5 + 7 + 9) = 82
X = W - (82 + Z)
Z = 5
X = W - (82 + 5)
X = W - 87
W = 90
X = 90 - 87
X = 3
Therefore adding 3 to the check digit will remove the error.

There is no doubt that the barcode technology has touched all our lives in
one way or the other and its continuing to evolve as needs change. One has
to admit that the digital revolution is fascinating and this technology will
certainly become more refined and useful in the future.
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Batting Average

Abstract

In this paper, I propose a method for computing a batsman’s batting
average that rectifies a major flaw in the current method of calculation.

INTRODUCTION

Cricket is a game played extensively in many countries. It is a game played
between two teams, consisting of 11 players each. Ideally, a team consists
of five batsman, one wicket-keeper and five bowlers. There are many known
formats of the game, but in this paper, I shall concentrate on the 50 over
format of the game called, One-day Internationals or ODIs. A match is broken
up into two innings of 50 overs each. The innings ends when all the 50 overs
have been bowled or if the 10 players have been out. There is always atleast
one batsman who remains not out by the end of the innings.

THE CURRENT METHOD

A batsman’s overall performance can be accessed by many statistical func-
tions, the most important of them being, the batsman’s average or his Batting
Average. In simple terms, a batsman’s average is the number of runs the
batsman is expected to make in any particular innings.

Batting Average is =
number of runs scored by the batsman

number of times he was out

The method of calculation is very similar to the calculation of the mean
in statistics, except for one small difference. Suppose a batsman bats in x
innings out of which he remained not out in p innings, and makes n runs in
these x innings. Then his batting average is n

x−p , but his mean is n
x

The reason why the number of times the batsman remained not out is
subtracted from the denominator is to give some credit to the batsman. For
example, suppose in a match, Sachin scores 50* (not out) and Dravid scores
50, but gets out. To calculate their average, their total runs would be divided
by their respective matches played. But Sachin would then not get any credit
for remaining not out. If the match had continued, then he would have gone
on to score more runs.
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Thus, to give Sachin some credit, when his new average is calculated, 50 is
added to his total runs, but 1 is not added to the denominator.

n+50
x > n+50

x+1
Batting Average Mean

Thus, clearly this average would be greater than the mean that would have
come out, hence giving Sachin some credit.

But there is a flaw in this method of calculation. There is always a possibility,
especially for lower order batsmen that their batting average comes out to be
greater than their highest runs ever scored. So in simple words, the batsman
is then expected to make more than he has ever made before whenever he
comes out to bat.

For example, in 2008, for the South African bowler, Dale Steyn, his batting
statistics were

Matches Innings Not Outs Runs Highest Score Batting Average
22 6 3 19 6 6.33

Clearly, his batting average is greater than his highest runs scored. This has
often been seen for other lower order batsmen as well.

MY METHOD

I present a new method for computing the batting average which removes
the above flaw completely. For every innings in which a batsman is not out,
I propose an algorithm to predict how many runs he would have scored, if he
had continued to bat. The batsman would then be considered out at that score.

Our aim is to predict what he would have scored, if he had continued to
bat. Suppose a batsman scores x∗o(not out) when the match ends. Define a
discrete random variable X taking values from xo.....xt where xt = highest
runs ever scored by the batsman.

Define rx to be the number of times he has made x runs
Define n to be the number of times he has scored ≥ xo
Define a function as:

fX(x) =

{
rx

n if x ∈ xo.....xt
0 otherwise

(3)
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Then fX(x) is a probability mass function as:

1) By definition, the function takes positive values only

2)
t∑
i=0

fXxi =
t∑
i=0

rxi

n
=

1
n

t∑
i=0

rxi =
n

n
= 1

Now that we have a probability mass function, we need to find a mass point
that suits our requirements. For that we find the median of this function. The
Median M is defined as:

M∑
x=xo

f(x) ≥ 1
2
≤

xt∑
x=M

f(x) , such that
M−1∑
x=xo

f(x) <
1
2
.

This M is our predicted score when the batsman scores x∗o. An important thing
to note here is that M is the batsman’s hypothetical score. So, to calculate
his average after this match, we add M to his previous hypothetical total
and divide by the number of innings played. The batting average becomes
the same as the batsman’s mean, with the total runs being replaced the total
hypothetical runs.

EXAMPLE

Let me explain this method with the help of an example. Suppose the
batsman plays 10 matches and his scoring pattern is 5,7,3,8,9,4,0,5,4,8.
Thus, his total runs are 53 and highest score is 9.

His batting average (according to old method) is same as the batsman’s mean,
since he has not been not out even once. His average is 53

10 = 5.3

In the 11th match, the batsman scores 5*. Now we will try to predict how
much he would have scored if he had continued to bat, using his previous
scores. Here:
xo (his score in this match) = 5
n (total time he has scored more than or equal to xo ) = 6
xt (his highest runs ever scored) = 9

The batman’s distribution of scores is :

r5 r6 r7 r8 r9
2 0 1 2 2
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The median for this is 7, thus our predicted score is 7.

Now the average of the batsman after the 11th match is
53 + 7

11
= 5.45

With this method, Dale Steyn’s average comes out to be 3.16, which is
clearly less than his highest runs ever scored, i.e. 6.

Other batsmen’s average, with this method comes out to be:

Batsman Mean Batting Average My Average
Suresh Raina 28.0 34.0 30.2
Ishant Sharma 2.2 6.5 2.5
MS Dhoni 32.8 42.4 40.1
Michael Hussey 34.1 55.4 50.9
Yuvraj Singh 31.7 37.2 35.3

Thus we see that this method, like the current method, gives some credit to
the batsman for remaining not out, but makes sure that the average would
never exceed the batsman’s highest runs ever scored, since the random
variable does not exceed xt.

I agree that this method of calculation is a lot more complicated than the
current method, but with the advent of computers into statistics, anything
can be calculated by just one click of the mouse. With a little more work
on this method, I feel it could be used by the ICC to officially calculate the
batsman’s batting average.
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